CSE 312: Foundations of Computing II

Section 9: Concentration Inequalities and Maximum Likelihood

0. Get an Inch, Take a MLE

Suppose x_1, \ldots, x_n are iid realizations from density

$$f_X\left(x \mid \theta\right) = \begin{cases} \frac{\theta x^{\theta-1}}{3^{\theta}}, & 0 \le x \le 3\\ 0, & \text{otherwise} \end{cases}$$

Find the MLE for θ .

1. Independent Shreds, You Say?

You are given 100 independent samples $x_1, x_2, \ldots, x_{100}$ from Bernoulli(p), where p is unknown. These 100 samples sum to 30. You would like to estimate the distribution's parameter p. Give all answers to 3 significant digits.

- (a) What is the maximum likelihood estimator \hat{p} of p?
- (b) Is \hat{p} an unbiased estimator of p?

2. Y Me?

Let $Y_1, Y_2, ..., Y_n$ be i.i.d. random variables with density function

$$f_Y(y|\sigma) = \frac{1}{2\sigma} \exp(-\frac{|y|}{\sigma})$$

Find the MLE for σ in terms of $|y_i|$.

3. It Means Nothing

- (a) Suppose x_1, x_2, \ldots, x_n are samples from a normal distribution whose mean is known to be zero, but whose variance is unknown. What is the maximum likelihood estimator for its variance?
- (b) Suppose the mean is known to be μ but the variance is unknown. How does the maximum likelihood estimator for the variance differ from the maximum likelihood estimator when both mean and variance are unknown?