
CSE 312: Foundations of Computing II
Section 9: Concentration Inequalities and Maximum Likelihood Solutions

0. Get an Inch, Take a MLE
Suppose x1, . . . , xn are iid realizations from density

fX (x | θ) =

{
θxθ−1

3θ
, 0 ≤ x ≤ 3

0, otherwise

Find the MLE for θ.
Solution:

L (x1, . . . , xn | θ) =
n∏

i=1

θxθ−1
i

3θ

lnL (x1, . . . , xn | θ) =
n∑

i=1

(ln θ + (θ − 1) lnxi − θ ln 3)

∂

∂θ
lnL (x1, . . . , xn | θ) =

n∑
i=1

(
1

θ
+ lnxi − ln 3

)
= 0

n

θ̂
+

n∑
i=1

lnxi − n ln 3 = 0

n

θ̂
= n ln 3−

n∑
i=1

lnxi

θ̂MLE =
n

n ln 3−
∑n

i=1 lnxi

Check that it is a maximum by showing the second derivative is negative for all values of θ.

∂2

∂θ2
lnL (x1, . . . , xn | θ) =

n∑
i=1

(
− 1

θ2

)
= − n

θ2
< 0

so lnL (x1, . . . , xn | θ) is concave downward everywhere.
Since it’s concave downward everywhere, the only criticcal point is a maximum.

1. Independent Shreds, You Say?
You are given 100 independent samples x1, x2, . . . , x100 from Bernoulli(p), where p is unknown. These 100
samples sum to 30. You would like to estimate the distribution’s parameter p. Give all answers to 3 significant
digits.

(a) What is the maximum likelihood estimator p̂ of p?
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Solution:
Note that Σi∈[n]xi = 30, as given in the problem spec. Therefore, there are 30 heads and 70 tails.
Therefore, we can setup L as follows,

L (x1, . . . , xn | p) = (1− p)70p30

lnL (x1, . . . , xn | p) = 70 ln (1− p) + 30 ln p

∂

∂p
lnL (x1, . . . , xn | p) = − 70

1− p
+

30

p
= 0

30

p̂
=

70

1− p̂

30− 30p̂ = 70p̂

p̂ =
30

100

(b) Is p̂ an unbiased estimator of p?

Solution:

E[p̂] = E

[
1

100

100∑
i=1

xi

]

=
1

100

100∑
i=1

E[xi]

=
1

100
· 100p = p.

so it is unbiased.

2. Y Me?
Let Y1, Y2, ...Yn be i.i.d. random variables with density function

fY (y|σ) =
1

2σ
exp(−|y|

σ
)

.
Find the the MLE for σ in terms of |yi|.
Solution:

L (y1, . . . , yn | σ) =

n∏
i=1

1

2σ
exp(−yi

σ
)

lnL (y1, . . . , yn | σ) =
n∑

i=1

[
− ln 2− lnσ − |yi|

σ

]
∂

∂σ
lnL (y1, . . . , yn | σ) =

n∑
i=1

[
− 1

σ
+

|yi|
σ2

]
= 0

−n

σ̂
+

n∑
i=1

Σn
i=1|yi|
σ̂2

= 0

σ̂ =
Σn
i=1|yi|
n

2



3. It Means Nothing
(a) Suppose x1, x2, . . . , xn are samples from a normal distribution whose mean is known to be zero, but

whose variance is unknown. What is the maximum likelihood estimator for its variance?

Solution:
Before we begin, we should note that this derivation will have to be with respect to σ2, not σ. Therefore,
we want to analyze the function L (x1, . . . , xn | σ2) = 1

σ
√
2π

exp −(x−µ)2

2σ2 = 1√
2πσ2

exp −(x−µ)2

2σ2 .

L (x1, . . . , xn | σ2) =
1√
2πσ2

exp
−(x− µ)2

2σ2

lnL (x1, . . . , xn | σ2) =
n∑

i=1

− ln
√
2πσ2 − x2i

2σ2

=
n∑

i=1

−1

2
ln 2πσ2 − x2i

2σ2

=
n∑

i=1

−1

2
ln 2π − 1

2
lnσ2 − x2i

2σ2

= −n

2
ln 2π − n

2
lnσ2 − Σn

i=1x
2
i

2σ2

∂

∂σ2
lnL (x1, . . . , xn | σ2) = − n

2σ2
+

Σn
i=1x

2
i

2σ4
= 0

Σn
i=1x

2
i

2σ4
=

n

2σ2

σ2 =
1

n

n∑
i=1

x2i

(b) Suppose the mean is known to be µ but the variance is unknown. How does the maximum likelihood
estimator for the variance differ from the maximum likelihood estimator when both mean and variance
are unknown?

Solution:

1

n

n∑
i=1

(xi − µ)2

vs.
1

n

n∑
i=1

(xi − θ̂1)
2

(The former turns out to be unbiased, the latter biased.)
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