
CSE 312: Foundations of Computing II
Section 9: Concentration Inequalities and Maximum Likelihood

0. Concentration Inequalities
Suppose X ∼ Binomial(6, 0.4). We will bound Pr(X ≥ 4) using the tail bounds we’ve learned, and compare
this to the true result.

(a) Give an upper bound for this probability using Markov’s inequality. Why can we use Markov’s inequality?

(b) Give an upper bound for this probability using Chebyshev’s inequality. You may have to rearrange alge-
braically and it may result in a weaker bound.

(c) Give an upper bound for this probability using the Chernoff bound.

(d) Give the exact probability.

1. Laplace MLE
Suppose x1, . . . , x2n are iid realizations from the Laplace density (double exponential density): for x ∈ R,

fX (x | θ) = 1

2
e−|x−θ|

Find the MLE for θ. For this problem, you need not verify that the MLE is indeed a maximizer. You may find
the sign function useful:

sgn (x) =

{
+1, x ≥ 0
−1, x < 0

2. MAP Estimation
Let x1, ..., xn be iid realizations from a distribution with common pmf pX(x; θ) where θ is an unknown but
fixed parameter. Let’s call the event {X1 = x1, ..., Xn = xn} = D for data. You may wonder why in MLE,
we seek to maximize the likelihood L(D | θ), rather than Pr(θ | D). This is because it doesn’t make sense
to compute Pr(θ), since θ is fixed. However, in Maximum a Posteriori (MAP) estimation, we assume the
parameter is a random variable (denoted Θ), and attempt to maximize πΘ(θ | D), where πΘ is the pmf or pdf of
Θ, depending on whether Θ is continuous or discrete. Using Bayes Theorem, we get πΘ(θ | D) = L(D|θ)πΘ(θ)

L(D) .
To maximize the LHS with respect to θ, we may ignore the denominator on the RHS since it is constant with
respect to θ. Hence MAP seeks to maximize πΘ(θ | D) ∝ L(D | θ)πΘ(θ). We call πΘ(θ) the prior distribution
on the parameter Θ, and πΘ(θ | D) the posterior distribution on Θ. MLE maximizes the likelihood, and MAP
maximizes the product of the likelihood and the prior. If the prior is uniform, we will see that MAP is the same
as MLE (since πΘ(θ) won’t depend on θ).

(a) Suppose we have the samples x1 = 0, x2 = 0, x3 = 1, x4 = 1, x5 = 0 from the Bernoulli(θ) distribution,
where θ is unknown. Assume θ is unrestricted; that is, θ ∈ (0, 1). What is θ̂MLE?

(b) Suppose we impose that θ ∈ {0.2, 0.5, 0.7}. What is θ̂MLE?

(c) Assume Θ is restricted as in part (b) (now a random variable for MAP). Assume a (discrete) prior of
πΘ(0.2) = 0.1, πΘ(0.5) = 0.01, πΘ(0.7) = 0.89. What is θ̂MAP ?

(d) Show that we can make the MAP estimator whatever we want it to be. That is, for each of the three
candidate parameters above, find a prior distribution on Θ such that the MAP estimate is that parameter.

1



(e) Typically, for the Bernoulli/Binomial distribution, if we use MAP, we want to be able to get any value
θ ∈ (0, 1) (not just ones in a finite set such as {0.2, 0.5, 0.7}). So we assign θ the Beta distribution with
parameters α, β > 0 and density πΘ(θ) = cθα−1(1−θ)β−1 for θ ∈ (0, 1) and 0 otherwise as a prior, where c
is a normalizing constant which has a complicated form. The mode of a W ∼ Beta(α, β) random variable
is given as α−1

α+β−2 (the mode is the value with the highest density = argmaxw∈(0,1) fW (w)). Suppose
x1, ..., xn are iid samples from the Bernoulli distribution with unknown parameter, where

∑n
i=1 xi = k.

Recall that the MLE is k/n. Show that the posterior πΘ(θ | D) has a Beta(k + α, n − k + β) density,
and find the MAP estimator for Θ. (Hint: use the mode given). Notice that Beta(1, 1) ≡ Uniform(0, 1).
If we had this prior, how would the MLE and MAP estimates compare?

(f) Since the posterior is also a Beta distribution, we call the Beta distribution the conjugate prior to the
Bernoulli/Binomial distribution. Intepret what the parameters α, β mean as to the prior.

(g) Which do you think is “better", MLE or MAP?
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