## CSE 312: Foundations of Computing II

## Section 8: Continuous RV's and Central Limit Theorem Solutions

## 0 . Transformations

Suppose $X \sim \operatorname{Uniform}(0,1)$ has the continuous uniform distribution on $(0,1)$. Let $Y=-\frac{1}{\lambda} \log X$ for some $\lambda>0$.
(a) What is $\Omega_{Y}$ ?

## Solution:

$\Omega_{Y}=(0, \infty)$ because $\log (x) \in(-\infty, 0)$ for $x \in(0,1)$.
(b) First write down $F_{X}(x)$ for $x \in(0,1)$. Then, find $F_{Y}(y)$ on $\Omega_{Y}$.

## Solution:

$F_{X}(x)=x$ for $x \in(0,1)$. Let $y \in \Omega_{Y}$.
$F_{Y}(y)=\operatorname{Pr}(Y \leq y)=\operatorname{Pr}\left(-\frac{1}{\lambda} \log X \leq y\right)=\operatorname{Pr}(\log X \geq-\lambda y)=\operatorname{Pr}\left(X \geq e^{-\lambda y}\right)=1-\operatorname{Pr}\left(X<e^{-\lambda y}\right)$
Then, because $e^{-\lambda y} \in(0,1)$

$$
=1-F_{X}\left(e^{-\lambda y}\right)=1-e^{-\lambda y}
$$

(c) Now find $f_{Y}(y)$ on $\Omega_{Y}$. What distribution does $Y$ have?

## Solution:

$$
f_{Y}(y)=F_{Y}^{\prime}(y)=\lambda e^{-\lambda y}
$$

Hence, $Y \sim \operatorname{Exponential}(\lambda)$.

## 1. Poisson CLT

Suppose $X_{1}, \ldots, X_{n}$ are iid Poisson $(\lambda)$ random variables, and let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, the sample mean. How large should we choose $n$ to be such that $\operatorname{Pr}\left(\frac{\lambda}{2} \leq \bar{X}_{n} \leq \frac{3 \lambda}{2}\right) \geq 0.99$ ? Use the CLT and give an answer involving $\Phi^{-1}(\cdot)$. Then evaluate it exactly when $\lambda=1 / 10$ using the $\Phi$ table on the last page.

## Solution:

We know $\mathbb{E}\left[X_{i}\right]=\operatorname{Var}\left(X_{i}\right)=\lambda$. By the CLT, $\bar{X}_{n} \approx \mathcal{N}\left(\lambda, \frac{\lambda}{n}\right)$, so

$$
\begin{gathered}
\operatorname{Pr}\left(\frac{\lambda}{2} \leq \bar{X}_{n} \leq \frac{3 \lambda}{2}\right) \approx \operatorname{Pr}\left(\frac{-\lambda / 2}{\sqrt{\lambda / n}} \leq Z \leq \frac{\lambda / 2}{\sqrt{\lambda / n}}\right)=\Phi\left(\frac{\lambda / 2}{\sqrt{\lambda / n}}\right)-\Phi\left(\frac{-\lambda / 2}{\sqrt{\lambda / n}}\right) \\
=\Phi\left(\frac{\lambda / 2}{\sqrt{\lambda / n}}\right)-\left(1-\Phi\left(\frac{\lambda / 2}{\sqrt{\lambda / n}}\right)\right)=2 \Phi\left(\frac{\lambda / 2}{\sqrt{\lambda / n}}\right)-1 \geq 0.99 \rightarrow \Phi\left(\frac{\lambda / 2}{\sqrt{\lambda / n}}\right) \geq 0.995 \\
\rightarrow \frac{\sqrt{\lambda}}{2} \sqrt{n} \geq \Phi^{-1}(0.995) \rightarrow n \geq \frac{4}{\lambda}\left[\Phi^{-1}(0.995)\right]^{2}
\end{gathered}
$$

We have $\lambda=\frac{1}{10}$ and from the table, $\Phi^{-1}(0.995) \approx 2.575$ so that $n \geq \frac{4}{1 / 10} \cdot 2.575^{2}=265.225$. So $n=266$ is the smallest value that will satisfy the condition.

## 2. Convolutions

Suppose $Z=X+Y$, where $X \perp Y . Z$ is called the convolution of two random variables. If $X, Y, Z$ are discrete,

$$
p_{Z}(z)=\operatorname{Pr}(X+Y=z)=\sum_{x} \operatorname{Pr}(X=x \cap Y=z-x)=\sum_{x} p_{X}(x) p_{Y}(z-x)
$$

If $X, Y, Z$ are continuous,

$$
F_{Z}(z)=\operatorname{Pr}(X+Y \leq z)=\int_{-\infty}^{\infty} \operatorname{Pr}(Y \leq z-X \mid X=x) f_{X}(x) d x=\int_{-\infty}^{\infty} F_{Y}(z-x) f_{X}(x) d x
$$

Suppose $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$.
(a) Find an expression for $\operatorname{Pr}\left(X_{1}<2 X_{2}\right)$ using a similar idea to convolution, in terms of $F_{X_{1}}, F_{X_{2}}, f_{X_{1}}, f_{X_{2}}$. (Your answer will be in the form of a single integral, and requires no calculations - do not evaluate it).

## Solution:

We use the continuous version of the "Law of Total Probability" to integrate over all possible values of $X_{2}$. Take the probability that $X_{1}<2 X_{2}$ given that value of $X_{2}$, times the density of $X_{2}$ at that value.

$$
\operatorname{Pr}\left(X_{1}<2 X_{2}\right)=\int_{-\infty}^{\infty} \operatorname{Pr}\left(X_{1}<2 X_{2} \mid X_{2}=x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}=\int_{-\infty}^{\infty} F_{X_{1}}\left(2 x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}
$$

(b) Find $s$, where $\Phi(s)=\operatorname{Pr}\left(X_{1}<2 X_{2}\right)$ using the fact that linear combinations of independent normal random variables are still normal.

## Solution:

Let $X_{3}=X_{1}-2 X_{2}$, so that $X_{3} \sim \mathcal{N}\left(\mu_{1}-2 \mu_{2}, \sigma_{1}^{2}+4 \sigma_{2}^{2}\right)$ (by the reproductive property of normal distributions)

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1}<2 X_{2}\right) & =\operatorname{Pr}\left(X_{1}-2 X_{2}<0\right)=\operatorname{Pr}\left(X_{3}<0\right)=\operatorname{Pr}\left(\frac{X_{3}-\left(\mu_{1}-2 \mu_{2}\right)}{\sqrt{\sigma_{1}^{2}+4 \sigma_{2}^{2}}}<\frac{0-\left(\mu_{1}-2 \mu_{2}\right)}{\sqrt{\sigma_{1}^{2}+4 \sigma_{2}^{2}}}\right) \\
& =\operatorname{Pr}\left(Z<\frac{2 \mu_{2}-\mu_{1}}{\sqrt{\sigma_{1}^{2}+4 \sigma_{2}^{2}}}\right)=\Phi\left(\frac{2 \mu_{2}-\mu_{1}}{\sqrt{\sigma_{1}^{2}+4 \sigma_{2}^{2}}}\right) \rightarrow s=\frac{2 \mu_{2}-\mu_{1}}{\sqrt{\sigma_{1}^{2}+4 \sigma_{2}^{2}}}
\end{aligned}
$$

## 3. Bad Computer

Each day, the probability your computer crashes is $10 \%$, independent of every other day. Suppose we want to evaluate the computer's performance over the next 100 days.
(a) Let $X$ be the number of crash-free days in the next 100 days. What distribution does $X$ have? Identify $\mathbb{E}[X]$ and $\operatorname{Var}(X)$ as well. Write an exact (possibly unsimplified) expression for $\operatorname{Pr}(X \geq 87)$.

## Solution:

$X \sim \operatorname{Binomial}(100,0.9)$. Hence, $\mathbb{E}[X]=n p=90$ and $\operatorname{Var}(X)=n p(1-p)=9$. Finally,

$$
\operatorname{Pr}(X \geq 87)=\sum_{k=87}^{100}\binom{100}{k}(0.9)^{k}(1-0.9)^{100-k}
$$

(b) Approximate the probability of at least 87 crash-free days out of the next 100 days using the Central Limit Theorem. Justify why we can use the CLT here.

## Solution:

From the previous part, we know that $\mathbb{E}[X]=90$ and $\operatorname{Var}(X)=9$.

$$
\begin{aligned}
\operatorname{Pr}(X \geq 87) & =\operatorname{Pr}(86.5<X<100.5)=\operatorname{Pr}\left(\frac{86.5-90}{3}<\frac{X-90}{3}<\frac{100.5-90}{3}\right) \\
& \approx \operatorname{Pr}\left(-1.17<\frac{X-90}{3}<3.5\right) \approx \Phi(3.5)+\Phi(1.17)-1 \approx 0.9998+0.8790-1=0.8788
\end{aligned}
$$

Notice that, if you had used $86.5<X$ in place of $86.5<X<100.5$, your answer would have been nearly the same, because $\Phi(3.5)$ is so close to 1 .

