CSE 312: Foundations of Computing II

Section 5: Variance, Important Discrete Distributions

0. Best Coach Ever!!

You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing match is 0.2 independently of every other match.
(a) How many matches do you expect to fight until you win 10 times ?
(b) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship, a boxer needs to win at least 10 matches in a year. What is the probability that you will go to the Championship this year?
(c) Let p be your answer to part (b). How many times can you expect to go to the Championship in your 20 year career?

1. Variance of a Product

Let X, Y, Z be independent random variables with means $\mu_{X}, \mu_{Y}, \mu_{Z}$ and variances $\sigma_{X}^{2}, \sigma_{Y}^{2}, \sigma_{Z}^{2}$, respectively. Find $\operatorname{Var}(X Y-Z)$.

2. Deception is my last name

Suppose we roll two fair 5-sided dice independently. Let X be the value of the first die, Y be the value of the second die, $Z=X+Y$ be their sum, $U=\min \{X, Y\}$ and $V=\max \{X, Y\}$.
(a) Find $p_{U}(u)$.
(b) Find $\mathbb{E}[U]$.
(c) Find $\mathbb{E}[Z]$.
(d) Find $\mathbb{E}[U V]$. (Note that U and V are not independent. Why not?).
(e) Find $\operatorname{Var}(U+V)$. You may use the fact that, if $W \sim \operatorname{Uniform}(a, b)$ (meaning equally likely to be any integer $\{a, a+1, \ldots, b\})$, then $\operatorname{Var}(W)=\frac{(b-a)(b-a+2)}{12}$.

3. True or False?

Identify the following statements as true or false (true means always true). Justify your answer.
(a) For any random variable X, we have $\mathbb{E}\left[X^{2}\right] \geq \mathbb{E}[X]^{2}$.
(b) Let X, Y be random variables. Then, X and Y are independent if and only if $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.
(c) Let $X \sim \operatorname{Binomial}(n, p)$ and $Y \sim \operatorname{Binomial}(m, p)$ be independent. Then, $X+Y \sim \operatorname{Binomial}(n+m, p)$.
(d) Let X_{1}, \ldots, X_{n+1} be independent $\operatorname{Bernoulli}(p)$ random variables. Then, $\mathbb{E}\left[\sum_{i=1}^{n} X_{i} X_{i+1}\right]=n p^{2}$.
(e) Let X_{1}, \ldots, X_{n+1} be independent $\operatorname{Bernoulli}(p)$ random variables. Then, $Y=\sum_{i=1}^{n} X_{i} X_{i+1} \sim \operatorname{Binomial}\left(n, p^{2}\right)$.
(f) If $X \sim \operatorname{Bernoulli}(p)$, then $n X \sim \operatorname{Binomial}(n, p)$.
(g) If $X \sim \operatorname{Binomial}(n, p)$, then $\frac{X}{n} \sim \operatorname{Bernoulli}(p)$.
(h) For any two independent random variables X, Y, we have $\operatorname{Var}(X-Y)=\operatorname{Var}(X)-\operatorname{Var}(Y)$.

