Section 5: Variance, Important Discrete Distributions

0. Best Coach Ever!!

You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing match is 0.2 independently of every other match.

- (a) How many matches do you expect to fight until you win 10 times ?
- (b) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship, a boxer needs to win at least 10 matches in a year. What is the probability that you will go to the Championship this year?
- (c) Let *p* be your answer to part (b). How many times can you expect to go to the Championship in your 20 year career?

1. Variance of a Product

Let X, Y, Z be independent random variables with means μ_X, μ_Y, μ_Z and variances $\sigma_X^2, \sigma_Y^2, \sigma_Z^2$, respectively. Find Var(XY - Z).

2. Deception is my last name

Suppose we roll two fair 5-sided dice independently. Let X be the value of the first die, Y be the value of the second die, Z = X + Y be their sum, $U = \min\{X, Y\}$ and $V = \max\{X, Y\}$.

- (a) Find $p_U(u)$.
- (b) Find $\mathbb{E}[U]$.
- (c) Find $\mathbb{E}[Z]$.
- (d) Find $\mathbb{E}[UV]$. (Note that U and V are **not** independent. Why not?).
- (e) Find Var(U + V). You may use the fact that, if $W \sim \text{Uniform}(a, b)$ (meaning equally likely to be any integer $\{a, a + 1, ..., b\}$), then Var $(W) = \frac{(b-a)(b-a+2)}{12}$.

3. True or False?

Identify the following statements as true or false (true means always true). Justify your answer.

- (a) For any random variable X, we have $\mathbb{E}[X^2] \ge \mathbb{E}[X]^2$.
- (b) Let X, Y be random variables. Then, X and Y are independent if and only if $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.
- (c) Let $X \sim \text{Binomial}(n, p)$ and $Y \sim \text{Binomial}(m, p)$ be independent. Then, $X + Y \sim \text{Binomial}(n + m, p)$.
- (d) Let $X_1, ..., X_{n+1}$ be independent Bernoulli(p) random variables. Then, $\mathbb{E}[\sum_{i=1}^n X_i X_{i+1}] = np^2$.
- (e) Let $X_1, ..., X_{n+1}$ be independent Bernoulli(p) random variables. Then, $Y = \sum_{i=1}^n X_i X_{i+1} \sim \text{Binomial}(n, p^2)$.
- (f) If $X \sim \text{Bernoulli}(p)$, then $nX \sim \text{Binomial}(n, p)$.
- (g) If $X \sim \text{Binomial}(n, p)$, then $\frac{X}{n} \sim \text{Bernoulli}(p)$.
- (h) For any two independent random variables X, Y, we have Var(X Y) = Var(X) Var(Y).