CSE 312: Foundations of Computing II

Section 5: Variance, Important Discrete Distributions Solutions

0. Best Coach Ever!!

You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing match is 0.2 independently of every other match.
(a) How many matches do you expect to fight until you win 10 times ?

Solution:

The number of matches you have to fight until you win 10 times can be modeled by $\sum_{i=1}^{10} X_{i}$ where $X_{i} \sim$ Geometric (0.2) is the number of matches you have to fight to win the $i^{\text {th }}$ time. Recall $\mathbb{E}\left[X_{i}\right]=\frac{1}{0.2}=5$. $\mathbb{E}\left[\sum_{i=1}^{10} X_{i}\right]=\sum_{i=1}^{10} \mathbb{E}\left[X_{i}\right]=\sum_{i}^{10} \frac{1}{0.2}=10 \cdot 5=50$.
(b) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship, a boxer needs to win at least 10 matches in a year. What is the probability that you will go to the Championship this year?

Solution:

You can go to the championship if you win more than or equal to 10 times this year. Let Y be the number of matches you win out of the 12 matches. Note that $Y \sim \operatorname{Binomial}(12,0.2)$. We are interested in

$$
\operatorname{Pr}(Y=10)+\operatorname{Pr}(Y=11)+\operatorname{Pr}(Y=12)=\sum_{i=10}^{12}\binom{12}{i} 0.2^{i}(1-0.2)^{12-i}
$$

(c) Let p be your answer to part (b). How many times can you expect to go to the Championship in your 20 year career?

Solution:

The number of times you go to the championship can be modeled by $Y \sim \operatorname{Binomial}(20, p)$. So, $E[Y]=$ $20 \cdot p$.

1. Variance of a Product

Let X, Y, Z be independent random variables with means $\mu_{X}, \mu_{Y}, \mu_{Z}$ and variances $\sigma_{X}^{2}, \sigma_{Y}^{2}, \sigma_{Z}^{2}$, respectively. Find $\operatorname{Var}(X Y-Z)$.

Solution:

First notice that $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \Longrightarrow \mathbb{E}\left[X^{2}\right]=\operatorname{Var}(X)+\mathbb{E}[X]^{2}=\sigma_{X}^{2}+\mu_{X}^{2}$, and same for Y.

$$
\begin{gathered}
\operatorname{Var}(X Y)=\mathbb{E}\left[X^{2} Y^{2}\right]-\mathbb{E}[X Y]^{2}(\text { by theorem in class }) \\
=\mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]-\mathbb{E}[X]^{2} \mathbb{E}[Y]^{2} \text { (by independence) } \\
=\left(\sigma_{X}^{2}+\mu_{X}^{2}\right)\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)-\mu_{X}^{2} \mu_{Y}^{2}
\end{gathered}
$$

By independence,

$$
\begin{aligned}
& \operatorname{Var}(X Y-Z)=\operatorname{Var}(X Y)+\operatorname{Var}(Z) \\
= & \left(\sigma_{X}^{2}+\mu_{X}^{2}\right)\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)-\mu_{X}^{2} \mu_{Y}^{2}+\sigma_{Z}^{2}
\end{aligned}
$$

2. Deception is my last name

Suppose we roll two fair 5-sided dice independently. Let X be the value of the first die, Y be the value of the second die, $Z=X+Y$ be their sum, $U=\min \{X, Y\}$ and $V=\max \{X, Y\}$.
(a) Find $p_{U}(u)$.

Solution:

$$
p_{U}(u)=\left\{\begin{array}{cl}
\frac{9}{25} & u=1 \\
\frac{7}{25} & u=2 \\
\frac{5}{25} & u=3 \\
\frac{3}{25} & u=4 \\
\frac{1}{25} & u=5
\end{array}\right.
$$

(b) Find $\mathbb{E}[U]$.

Solution:

Use definition of Expectation: $\mathbb{E}[U]=2.2$
(c) Find $\mathbb{E}[Z]$.

Solution:

By linearity of expectation, $\mathbb{E}[Z]=\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=3+3=6$.
(d) Find $\mathbb{E}[U V]$. (Note that U and V are not independent. Why not?).

Solution:

$\mathbb{E}[U V]=\mathbb{E}[X Y]=\mathbb{E}[X] E[Y]=3^{2}=9$ Since $U V=X Y$ (why?), and then X, Y are independent.
(e) Find $\operatorname{Var}(U+V)$. You may use the fact that, if $W \sim \operatorname{Uniform}(a, b)$ (meaning equally likely to be any integer $\{a, a+1, \ldots, b\})$, then $\operatorname{Var}(W)=\frac{(b-a)(b-a+2)}{12}$.

Solution:

Since $X, Y \sim \operatorname{Uniform}(1,5), \operatorname{Var}(X)=\operatorname{Var}(Y)=\frac{(5-1) \cdot(5-1+2)}{12}=2$

$$
\operatorname{Var}(U+V)=\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=2+2=4
$$

because X and Y are independent and $U+V=X+Y$ (why?).

3. True or False?

Identify the following statements as true or false (true means always true). Justify your answer.
(a) For any random variable X, we have $\mathbb{E}\left[X^{2}\right] \geq \mathbb{E}[X]^{2}$.

Solution:

True, since $0 \leq \operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$.
(b) Let X, Y be random variables. Then, X and Y are independent if and only if $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Solution:

False. The forward implication is true, but the reverse is not. For example, if $X \sim \operatorname{Uniform}(-1,1)$ (equally likely to be in $\{-1,0,1\}$), and $Y=X^{2}$, we have $\mathbb{E}[X]=0$, so $\mathbb{E}[X] \mathbb{E}[Y]=0$. However, since $X=X^{3}$ (why?), $\mathbb{E}[X Y]=\mathbb{E}\left[X X^{2}\right]=\mathbb{E}\left[X^{3}\right]=\mathbb{E}[X]=0$, we have that $\mathbb{E}[X] \mathbb{E}[Y]=0=\mathbb{E}[X Y]$. However, X and Y are not independent; indeed, $\operatorname{Pr}(Y=0 \mid X=0)=1 \neq \frac{1}{3}=\operatorname{Pr}(Y=0)$.
(c) Let $X \sim \operatorname{Binomial}(n, p)$ and $Y \sim \operatorname{Binomial}(m, p)$ be independent. Then, $X+Y \sim \operatorname{Binomial}(n+m, p)$.

Solution:

True. X is the sum of n independent Bernoulli trials, and Y is the sum of m. So $X+Y$ is the sum of $n+m$ independent Bernoulli trials, so $X+Y \sim \operatorname{Binomial}(n+m, p)$.
(d) Let X_{1}, \ldots, X_{n+1} be independent $\operatorname{Bernoulli}(p)$ random variables. Then, $\mathbb{E}\left[\sum_{i=1}^{n} X_{i} X_{i+1}\right]=n p^{2}$.

Solution:

True. Notice that $X_{i} X_{i+1}$ is also Bernoulli (only takes on 0 and 1), but is 1 iff both are 1 , so $X_{i} X_{i+1} \sim$ Bernoulli $\left(p^{2}\right)$. The statement holds by linearity, since $\mathbb{E}\left[X_{i} X_{i+1}\right]=p^{2}$.
(e) Let X_{1}, \ldots, X_{n+1} be independent $\operatorname{Bernoulli}(p)$ random variables. Then, $Y=\sum_{i=1}^{n} X_{i} X_{i+1} \sim \operatorname{Binomial}\left(n, p^{2}\right)$.

Solution:

False. They are all Bernoulli p^{2} as determined in the previous part, but they are not independent. Indeed, $\operatorname{Pr}\left(X_{1} X_{2}=1 \mid X_{2} X_{3}=1\right)=\operatorname{Pr}\left(X_{1}=1\right)=p \neq p^{2}=\operatorname{Pr}\left(X_{1} X_{2}=1\right)$.
(f) If $X \sim \operatorname{Bernoulli}(p)$, then $n X \sim \operatorname{Binomial}(n, p)$.

Solution:

False. The range of X is $\{0,1\}$, so the range of $n X$ is $\{0, n\}$. $n X$ cannot be $\operatorname{Bin}(n, p)$, otherwise its range would be $\{0,1, \ldots, n\}$.
(g) If $X \sim \operatorname{Binomial}(n, p)$, then $\frac{X}{n} \sim \operatorname{Bernoulli}(p)$.

Solution:

False. Again, the range of X is $\{0,1, \ldots, n\}$, so the range of $\frac{X}{n}$ is $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$. Hence it cannot be $\operatorname{Ber}(p)$, otherwise its range would be $\{0,1\}$.
(h) For any two independent random variables X, Y, we have $\operatorname{Var}(X-Y)=\operatorname{Var}(X)-\operatorname{Var}(Y)$.

Solution:

False. $\operatorname{Var}(X-Y)=\operatorname{Var}(X+(-Y))=\operatorname{Var}(X)+(-1)^{2} \operatorname{Var}(Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.

