CSE 312: Foundations of Computing II

Section 4: Random Variables, Linearity of Expectation Solutions

0 . Identify that Range!

Identify the support/codomain Ω_{X} of the random variable X, if X is...
(a) The sum of two rolls of a six-sided die.

Solution:

$\Omega_{X}=\{2,3, \ldots, 12\}$
(b) The number of lottery tickets I buy until I win it.

Solution:

$\Omega_{X}=\{1,2, \ldots\}=\mathbb{N}$
(c) The number of heads in n flips of a coin with $0<\operatorname{Pr}($ head $)<1$.

Solution:

$\Omega_{X}=\{0,1, \ldots, n\}$
(d) The number of heads in n flips of a coin with $\operatorname{Pr}($ head $)=1$.

Solution:

$\Omega_{X}=\{n\}$
(e) The time I wait at the bus stop for the next bus.

Solution:

$\Omega_{X}=[0, \infty)$
(f) The number of people born in the next year.

Solution:

$\Omega_{X}=\{0,1,2, \ldots\}$

1. Kit Kats Again

Suppose we have N candies in a jar, K of which are kit kats. Suppose we draw (without replacement) until we have (exactly) k kit kats, $k \leq K \leq N$. Let X be the number of draws until the $k^{\text {th }}$ kit kat. What is Ω_{X}, the codomain of X ? What is $p_{X}(n)=\operatorname{Pr}(X=n)$? (We say X is a "negative hypergeometric" random variable). Solution:

$$
\begin{gathered}
\Omega_{X}=\{k, k+1, \ldots N-K+k\} \\
p_{X}(n)=\operatorname{Pr}(X=n)=\frac{\binom{K}{k-1}\binom{N-K}{n-k}}{\binom{N}{n-1}} \frac{K-(k-1)}{N-(n-1)}, n \in \Omega_{X}
\end{gathered}
$$

2. Frogger

A frog starts on a 1-dimensional number line at 0 . At each second, independently, the frog takes a unit step right with probability p_{1}, to the left with probability p_{2}, and doesn't move with probability p_{3}, where $p_{1}+p_{2}+p_{3}=1$. After 2 seconds, let X be the location of the frog.
(a) Determine the codomain Ω_{X} of X, and $p_{X}(k)$ the probability mass function for X.

Solution:

Let L be a left step, R be a right step, and N be no step.
The codomain of X is $\{-2,-1,0,1,2\}$. We can compute $p_{X}(-2)=\operatorname{Pr}(X=-2)=\operatorname{Pr}(L L)=p_{2}^{2}$, $p_{X}(-1)=\operatorname{Pr}(X=-1)=\operatorname{Pr}(L N \cup N L)=2 p_{2} p_{3}$, and $p_{X}(0)=\operatorname{Pr}(X=0)=\operatorname{Pr}(N N \cup L R \cup R L)=$ $p_{3}^{2}+2 p_{1} p_{2}$. Similarly for $p_{X}(1)$ and $p_{X}(2)$.

$$
p_{X}(k)= \begin{cases}p_{2}^{2} & k=-2 \\ 2 p_{2} p_{3} & k=-1 \\ p_{3}^{2}+2 p_{1} p_{2} & k=0 \\ 2 p_{1} p_{3} & k=1 \\ p_{1}^{2} & k=2\end{cases}
$$

(b) Compute $\mathbb{E}[X]$ from the definition.

Solution:

$$
\mathbb{E}[X]=(-2)\left(p_{2}^{2}\right)+(-1)\left(2 p_{2} p_{3}\right)+(0)\left(p_{3}^{2}+2 p_{1} p_{2}\right)+(1)\left(2 p_{1} p_{3}\right)+(2)\left(p_{1}^{2}\right)=2\left(p_{1}-p_{2}\right)
$$

(c) Compute $\mathbb{E}[X]$ again, but using linearity of expectation. (You will find that $\mathbb{E}[X]=2\left(p_{1}-p_{2}\right)$, which is actually equivalent to the previous answer after simplification).

Solution:

Let Y be the amount you moved on the first step (either $-1,0,1$), and Z the amount you moved on the second step. Then, $\mathbb{E}[Y]=\mathbb{E}[Z]=(1)\left(p_{1}\right)+(0)\left(p_{3}\right)+(-1)\left(p_{2}\right)=p_{1}-p_{2}$.
Then $X=Y+Z$ and $\mathbb{E}[X]=\mathbb{E}[Y+Z]=\mathbb{E}[Y]+\mathbb{E}[Z]=2\left(p_{1}-p_{2}\right)$

3. Frogger Again!

The purpose of this problem is to show that in general, $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$. Recall $\mathbb{E}[g(X)]=\sum_{x \in \Omega_{X}} g(x) p_{X}(x)$. Consider the frog in the previous problem. We computed that $\mathbb{E}[X]=2\left(p_{1}-p_{2}\right)$.
(a) Let $Y=g(X)=|X|$. Interpret what Y represents in English, and identity the codomain Ω_{Y}.

Solution:

Y is the absolute value of X, which is just the absolute distance from the origin, so $\Omega_{Y}=\{0,1,2\}$.
(b) Find the probability mass function for $Y, p_{Y}(k)=\operatorname{Pr}(Y=k)$. Then determine $\mathbb{E}[Y]=\sum_{y \in \Omega_{Y}} y p_{Y}(y)$. Verify that it equals the previous formula $\mathbb{E}[Y]=\sum_{x \in \Omega_{X}} g(x) p_{X}(x)=\sum_{x \in \Omega_{X}}|x| p_{X}(x)$.

Solution:

$$
\begin{gathered}
p_{Y}(k)= \begin{cases}p_{3}^{2}+2 p_{1} p_{2} & k=0 \\
2 p_{1} p_{3}+2 p_{2} p_{3} & k=1 \\
p_{1}^{2}+p_{2}^{2} & k=2\end{cases} \\
\mathbb{E}[Y]=0 \cdot\left(p_{3}^{2}+2 p_{1} p_{2}\right)+1 \cdot\left(2 p_{1} p_{3}+2 p_{2} p_{3}\right)+2 \cdot\left(p_{1}^{2}+p_{2}^{2}\right) \\
\mathbb{E}[Y]=\sum_{x \in \Omega_{X}}|x| p_{X}(x)=|-2|\left(p_{2}^{2}\right)+|-1|\left(2 p_{2} p_{3}\right)+0\left(p_{3}^{2}+2 p_{1} p_{2}\right)+|1|\left(2 p_{1} p_{3}\right)+|2|\left(p_{1}^{2}\right)
\end{gathered}
$$

They are equal.
(c) Let's give some concrete values: let $p_{1}=p_{2}=\frac{1}{2}$, and $p_{3}=0$ (so the frog just moves left and right with equal probability, and can't stay still). Demonstrate $\mathbb{E}[|X|] \neq|\mathbb{E}[X]|$ (Recall $Y=|X|$, so $\mathbb{E}[|X|]=$ $\mathbb{E}[Y])$.

Solution:

$\mathbb{E}[X]=2\left(p_{1}-p_{2}\right)=0$, so $|\mathbb{E}[X]|=0$ as well. On the other hand, $\mathbb{E}[|X|]=\mathbb{E}[Y]=2\left(\frac{1}{2}^{2}+\frac{1}{2}^{2}\right)=\frac{1}{2}$. They are not equal.

4. Hungry Washing Machine

You have 10 pairs of socks (so 20 socks in total), with each pair being a different color. You put them in the washing machine, but the washing machine eats 4 of the socks chosen at random. Every subset of 4 socks is equally probable to be the subset that gets eaten. Let X be the number of complete pairs of socks that you have left.
(a) What is the codomain of X, Ω_{X} (the set of possible values it can take on)? What is the probability mass function of X ?

Solution:

$$
\begin{gathered}
\Omega_{X}=\{6,7,8\} \\
p_{X}(k)=\left\{\begin{array}{ll}
\frac{\binom{10}{4} 2^{4}}{(20} & k=6 \\
\left.\frac{10(9)}{(20}\right)^{2} & k=7 \\
(10) & k=7 \\
\left.\frac{(10}{(20}\right) & k=8 \\
40
\end{array}\right)
\end{gathered}
$$

(b) Find $\mathbb{E}[X]$ from the definition of expectation.

Solution:

$$
\mathbb{E}[X]=6 \cdot \frac{\binom{10}{4} 2^{4}}{\binom{20}{4}}+7 \cdot \frac{10\binom{9}{2} 2^{2}}{\binom{20}{4}}+8 \cdot \frac{\binom{10}{2}}{\binom{20}{4}}=\frac{120}{19}
$$

(c) Find $\mathbb{E}[X]$ using linearity of expectation.

Solution:

For $i \in[10]$, let X_{i} be 1 if pair i survived, and 0 otherwise. Then, $X=\sum_{i=1}^{10} X_{i}$. But $\mathbb{E}\left[X_{i}\right]=$ $1 \cdot \operatorname{Pr}\left(X_{i}=1\right)+0 \cdot \operatorname{Pr}\left(X_{i}=0\right)=\operatorname{Pr}\left(X_{i}=1\right)=\frac{\binom{18}{4}}{\binom{20}{4}}$. Hence,

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{10} X_{i}\right]=\sum_{i=1}^{10} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{10} \frac{\binom{18}{4}}{\binom{20}{4}}=10 \frac{\binom{18}{4}}{\binom{20}{4}}=\frac{120}{19}
$$

(d) Which way was easier? Doing both (a) and (b), or just (c)?

Solution:

Part (c).

