CSE 312: Foundations of Computing II

Section 4: Random Variables, Linearity of Expectation Solutions

0. Balls in Bins

Let X be the number of bins that remain empty when m balls are distributed into n bins randomly and independently. For each ball, each bin has an equal probability of being chosen. (Notice that two bins being empty are not independent events: if one bin is empty, that decreases the probability that the second bin will also be empty. This is particularly obvious when $n=2$ and $m>0$.) Find $\mathbb{E}[X]$.

Solution:

For $i \in[n]$, let X_{i} be 1 if bin i is empty, and 0 otherwise. Then, $X=\sum_{i=1}^{n} X_{i}$. We first compute $\mathbb{E}\left[X_{i}\right]=$ $1 \cdot \operatorname{Pr}\left(X_{i}=1\right)+0 \cdot \operatorname{Pr}\left(X_{i}=0\right)=\operatorname{Pr}\left(X_{i}=1\right)=\left(\frac{n-1}{n}\right)^{m}$. Hence,

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=n \cdot\left(\frac{n-1}{n}\right)^{m}
$$

1. Fair Game?

You flip a fair coin independently and count the number of flips until the first tail, including that tail flip in the count. If the count is n, you receive 2^{n} dollars. What is the expected amount you will receive? How much would you be willing to pay at the start to play this game?

Solution:

The expected amount is ∞. Let N be the number of flips until the first tail, so $p_{N}(n)=\frac{1}{2^{n}}$ for $n \in \mathbb{N}$. Hence $\mathbb{E}\left[2^{N}\right]=\sum_{n=1}^{\infty} 2^{n} \frac{1}{2^{n}}=\sum_{n=1}^{\infty} 1=\infty$. In theory, you should be willing to pay any finite amount of money to play this game, but I admit I would be nervous to pay a lot. For instance, if you pay $\$ 1000$, you will lose money unless the first 9 flips are all heads. With high probability you will lose money, and with low probability you will win a lot of money.

2. Symmetric Difference

Suppose A and B are random, independent (possibly empty) subsets of $\{1,2, \ldots, n\}$, where each subset is equally likely to be chosen as A or B. Consider $A \Delta B=\left(A \cap B^{C}\right) \cup\left(B \cap A^{C}\right)=(A \cup B) \cap\left(A^{C} \cup B^{C}\right)$, i.e., the set containing elements that are in exactly one of A and B. Let X be the random variable that is the size of $A \Delta B$. What is $\mathbb{E}[X]$?

Solution:

For $i=1,2, \ldots, n$, let X_{i} be the indicator of whether $i \in A \Delta B$. Then $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{2}$, and $X=\sum_{i=1}^{n} X_{i}$, so

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\frac{n}{2}
$$

3. Negative Binomial Random Variable

Recall that $W \sim \operatorname{Geo}(p)$ (W has a geometric distribution with success parameter p) if it is the number of independent coin flips up to and including the first head, where $\operatorname{Pr}(\mathrm{HEAD})=p$. The probability mass function is $p_{W}(k)=(1-p)^{k-1} p$ and $\mathbb{E}[W]=\frac{1}{p}$. What if we wanted to flip until the $r^{t h}$ head, and not just the first? We say X is a negative binomial random variable with parameters r a positive integer and $p=\operatorname{Pr}$ (HEAD) (written $X \sim \operatorname{Neg} \operatorname{Bin}(r, p)$) if X is the number of independent coin flips up to and including the $r^{\text {th }}$ head.
(a) What is the codomain Ω_{X}, and the probability mass function $p_{X}(k)$, if $X \sim \operatorname{NegBin}(r, p)$?

Solution:

We must flip at least r times, and can flip any number of times, so $\Omega_{X}=\{r, r+1, \ldots\}$. To get the $r^{t h}$ head on the $k^{\text {th }}$ flip, the first $k-1$ must have exactly $r-1$ heads and $k-r$ tails, followed by a head; there are $\binom{k-1}{r-1}$ ways to choose positions of these heads and tails. There are r heads and $k-r$ tails total, with probability $p^{r}(1-p)^{k-r}$ for any particular sequence. Hence,

$$
p_{X}(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}
$$

(b) Find $\mathbb{E}[X]$ (hint: use linearity of expectation with r appropriate random variables, which are not necessarily indicator variables).

Solution:

Let X_{1}, \ldots, X_{r} be independent $\operatorname{Geo}(p)$ random variables. Then, $X=\sum_{i=1}^{r} X_{i}$. Hence, by linearity of expectation,

$$
\mathbb{E}[X]=\sum_{i=1}^{r} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{r} \frac{1}{p}=\frac{r}{p}
$$

4. Hypergeometric Random Variable

Recall the trick or treating scenario: Suppose on Halloween, someone is too lazy to keep answering the door, and leaves a jar of exactly N total candies. You count that there are exactly K of them which are kit kats (and the rest are not). The sign says to please take exactly n candies. Each item is equally likely to be drawn. Let X be the number of kit kats we draw (out of n). We say X is a hypergeometric random variable, and write $X \sim \operatorname{HypGeo}(N, K, n)$.
(a) Find $p_{X}(k)=\operatorname{Pr}(X=k)$.

Solution:

$$
p_{X}(k)=\operatorname{Pr}(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}
$$

We choose k out of the K kit kats, and $n-k$ out of the $N-K$ other candies. The denominator is the total number of ways to choose n candies out of N total.
(b) Compute $\mathbb{E}[X]$ (hint: define appropriate indicator variables and use linearity of expectation).

Solution:

For $i=1, \ldots, n$, let X_{i} be 1 if candy i was a kit kat, and 0 otherwise. Then, $\mathbb{E}\left[X_{i}\right]=1 \cdot \operatorname{Pr}\left(X_{i}=1\right)+0$. $\operatorname{Pr}\left(X_{i}=0\right)=\operatorname{Pr}\left(X_{i}=1\right)=\frac{K}{N}$. So,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{K}{N}=n \frac{K}{N}
$$

(c) Suppose we have the same setup: N candies total, K of which are kit kats, and we plan to draw n of them. This time, however, we just want to sniff the candies. We will draw a candy, sniff the candy, put it back, and draw another,.... We do this n times total. Let Y be the number of kit kats sniffed. What distribution does Y have, and what is $\mathbb{E}[Y]$? Compare it to the expectation from the previous part from when we didn't return the candies.

Solution:

$Y \sim \operatorname{Bin}\left(n, \frac{K}{N}\right)$, and we know $\mathbb{E}[Y]=n \frac{K}{N}$. It is the same!

