
CSE 312: Foundations of Computing II
Section 4: Random Variables, Linearity of Expectation Solutions

0. Balls in Bins
Let X be the number of bins that remain empty when m balls are distributed into n bins randomly and
independently. For each ball, each bin has an equal probability of being chosen. (Notice that two bins being
empty are not independent events: if one bin is empty, that decreases the probability that the second bin will
also be empty. This is particularly obvious when n = 2 and m > 0.) Find E[X].
Solution:
For i ∈ [n], let Xi be 1 if bin i is empty, and 0 otherwise. Then, X =

∑n
i=1Xi. We first compute E[Xi] =

1 · Pr(Xi = 1) + 0 · Pr(Xi = 0) = Pr(Xi = 1) = (n−1
n )m. Hence,

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] = n · (n− 1

n
)m

1. Fair Game?
You flip a fair coin independently and count the number of flips until the first tail, including that tail flip in the
count. If the count is n, you receive 2n dollars. What is the expected amount you will receive? How much
would you be willing to pay at the start to play this game?
Solution:
The expected amount is ∞. Let N be the number of flips until the first tail, so pN (n) = 1

2n for n ∈ N. Hence
E
[
2N

]
=

∑∞
n=1 2

n 1
2n =

∑∞
n=1 1 = ∞. In theory, you should be willing to pay any finite amount of money to

play this game, but I admit I would be nervous to pay a lot. For instance, if you pay $1000, you will lose money
unless the first 9 flips are all heads. With high probability you will lose money, and with low probability you will
win a lot of money.

2. Symmetric Difference
Suppose A and B are random, independent (possibly empty) subsets of {1, 2, . . . , n}, where each subset is
equally likely to be chosen as A or B. Consider A∆B = (A ∩BC) ∪ (B ∩ AC) = (A ∪ B) ∩ (AC ∪BC), i.e.,
the set containing elements that are in exactly one of A and B. Let X be the random variable that is the size
of A∆B. What is E[X]?
Solution:
For i = 1, 2, . . . , n, let Xi be the indicator of whether i ∈ A∆B. Then E[Xi] = Pr(Xi = 1) = 1

2 , and
X =

∑n
i=1Xi, so

E[X] = E

[
n∑

i=1

Xi

]
=

n

2

.

3. Negative Binomial Random Variable
Recall that W ∼ Geo(p) (W has a geometric distribution with success parameter p) if it is the number of
independent coin flips up to and including the first head, where Pr(HEAD) = p. The probability mass function
is pW (k) = (1 − p)k−1p and E[W ] = 1

p . What if we wanted to flip until the rth head, and not just the first?
We say X is a negative binomial random variable with parameters r a positive integer and p = Pr(HEAD)
(written X ∼ NegBin(r, p)) if X is the number of independent coin flips up to and including the rth head.

(a) What is the codomain ΩX , and the probability mass function pX(k), if X ∼ NegBin(r, p)?
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Solution:
We must flip at least r times, and can flip any number of times, so ΩX = {r, r + 1, ...}. To get the rth

head on the kth flip, the first k − 1 must have exactly r − 1 heads and k − r tails, followed by a head;
there are

(
k−1
r−1

)
ways to choose positions of these heads and tails. There are r heads and k− r tails total,

with probability pr(1− p)k−r for any particular sequence. Hence,

pX(k) =

(
k − 1

r − 1

)
pr(1− p)k−r

(b) Find E[X] (hint: use linearity of expectation with r appropriate random variables, which are not necessarily
indicator variables).

Solution:
Let X1, ..., Xr be independent Geo(p) random variables. Then, X =

∑r
i=1Xi. Hence, by linearity of

expectation,

E[X] =

r∑
i=1

E[Xi] =

r∑
i=1

1

p
=

r

p

4. Hypergeometric Random Variable
Recall the trick or treating scenario: Suppose on Halloween, someone is too lazy to keep answering the door,
and leaves a jar of exactly N total candies. You count that there are exactly K of them which are kit kats (and
the rest are not). The sign says to please take exactly n candies. Each item is equally likely to be drawn. Let
X be the number of kit kats we draw (out of n). We say X is a hypergeometric random variable, and write
X ∼ HypGeo(N,K, n).

(a) Find pX(k) = Pr(X = k).

Solution:

pX(k) = Pr(X = k) =

(
K

k

)(
N −K

n− k

)
(
N

n

)
We choose k out of the K kit kats, and n− k out of the N −K other candies. The denominator is the
total number of ways to choose n candies out of N total.

(b) Compute E[X] (hint: define appropriate indicator variables and use linearity of expectation).

Solution:
For i = 1, ..., n, let Xi be 1 if candy i was a kit kat, and 0 otherwise. Then, E[Xi] = 1 ·Pr(Xi = 1)+ 0 ·
Pr(Xi = 0) = Pr(Xi = 1) = K

N . So,

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

K

N
= n

K

N
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(c) Suppose we have the same setup: N candies total, K of which are kit kats, and we plan to draw n of
them. This time, however, we just want to sniff the candies. We will draw a candy, sniff the candy, put
it back, and draw another,.... We do this n times total. Let Y be the number of kit kats sniffed. What
distribution does Y have, and what is E[Y ]? Compare it to the expectation from the previous part from
when we didn’t return the candies.

Solution:
Y ∼ Bin(n, KN ), and we know E[Y ] = nK

N . It is the same!

3


