CSE 312: Foundations of Computing II

Section 1: Combinatorics Solutions

0. Birthday Cake

A chef is preparing desserts for the week, starting on a Sunday. On each day, only one of five desserts (apple pie, cherry pie, strawberry pie, pineapple pie, and cake) may be served. On Thursday there is a birthday, so cake must be served that day. On no two consecutive days can the chef serve the same dessert. How many dessert menus are there for the week?
Solution:
Start from Thursday and work forward and backward in the week: $4 \cdot 4 \cdot 4 \cdot 4 \cdot 1 \cdot 4 \cdot 4=4^{6}$

1. Photographs

Suppose that 8 people, including you and a friend, line up for a picture. In how many ways can the photographer organize the line if she wants to have fewer than 2 people between you and your friend?

Solution:

There are two cases; so, we count using the rule of sum:
Case 1: You are next to your friend. Then there are there are 7 different slots. Then, there are 7 sets of positions you and your friend can occupy (positions $1 / 2,2 / 3, \ldots, 7 / 8$), and for each set of positions, there are 2 ways to arrange you and your friend, So there are $7 \cdot 2$ ways to pick positions for you and your friend.
Case 2: There is exactly 1 person between you and your friend. Then, there are 6 sets of positions you and your friend can occupy (positions $1 / 3,2 / 4, \ldots, 6 / 8$), and for each set of positions, there are 2 ways to arrange you and your friend. So there are $6 \cdot 2$ ways to pick positions for you and your friend.
Note that in both cases, there are then 6 ! ways to arrange the remaining people, so we multiply both cases by 6 !.
Therefore, the answer is $(2 \cdot 7+2 \cdot 6) \cdot 6$!

2. Rearrangements

Permutations of objects, some of which are indistinguishable.
(a) How many permutations are there of the letters in DAWGY?

Solution:

(b) How many permutations are there of the letters in DOGGY?

Solution:

Let x be the number of permuations there are of the letters in DOGGY. Notice that if we consider the two $G s$ as distinct letters, (say, by labelling them G_{1} and G_{2}), then there are 5! ways of rearranging the [now] 5 distinct letters of $\mathrm{DOG}_{1} \mathrm{G}_{2} \mathrm{Y}$. However, we can count the same thing by noticing that when we rearrange the letters in DOGGY, there are two possible orderings of Gs for each rearrangement: either the G_{1} can come first or the G_{2}. Therefore, there are also $2 x$ ways to rearrange $D G_{1} G_{2} Y$. Thus, we see $5!=2 x, x=\frac{5!}{2}$
(c) How many permutations are there of the letters in GODOGGY?

Solution:

Like in the previous question, let x be the number of permuations there are of the letters in GODOGGY. Notice that if we consider the three Gs and two Os as distinct letters, (say, by labelling them G_{1} and G_{2}), then there are 5 ! ways of rearranging the [now] 7 distinct letters of $\mathrm{DOG}_{1} \mathrm{G}_{2} \mathrm{Y}$. However, we can count the same thing by noticing that when we rearrange the letters in GODOGGY, there are 3! possible orderings of Gs for each rearrangement and 2 ! possible reorderings of Os for each rearrangement. Therefore, there are also $3!\cdot 2 \cdot x$ ways to rearrange $\mathrm{G}_{1} \mathrm{O}_{1} \mathrm{DO}_{2} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{Y}$. Thus, we see $7!=3!\cdot 2 \cdot x, x=\frac{7!}{3!\cdot 2!}$

3. Rabbits!

Rabbits Peter and Pauline have three offspring: Flopsie, Mopsie, and Cotton-tail. These five rabbits are to be distributed to four different pet stores so that no store gets both a parent and a child. It is not required that every store gets a rabbit. In how many different ways can this be done?

Solution:

If Peter and Pauline go to the same store, there are 4 stores it could be. For each such choice, there are 3 choices of store for each of the 3 offspring, so 3^{3} choices for all the offspring. If Peter and Pauline go to different stores, there are $4 \cdot 3=12$ pairs of stores they could go to. For each such choice, there are 2 choices of store for each of the 3 offspring, so 2^{3} choices for all the offspring. Therefore the answer is $4 \cdot 3^{3}+12 \cdot 2^{3}$.

4. Seating

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if ...
(a) ... the seats are assigned arbitrarily?

Solution:

10 !
(b) \ldots all couples are to get adjacent seats?

Solution:

$10 \cdot 8 \cdot 6 \cdot 4 \cdot 2=2^{5} \cdot 5$! : there are 5 ! permutations of the 5 couples, and then 2 permutations within each of the 5 couples.
(c) ... the seats are assigned arbitrarily, except that one couple insists on not sitting in adjacent seats?

Solution:

There are $9!\cdot 2$ arrangements in which this couple does sit in adjacent seats, since you can treat the couple as a ninth unit added to the other 8 individuals, and then there are 2 permutations of that couple's seats. That means the answer to the question is $10!-9!\cdot 2=8 \cdot 9$!.
Alternatively, we can do casework. Name the two people in the couple A and B. There are two cases: A can sit on one of the ends, or not. If A sits on an end seat, A has 2 choices and B has 8 possible seats. If A doesn't sit on the end, A has 8 choices and B only has 7 . So there are a total of $2 \cdot 8+8 \cdot 7$ ways A and B can sit. Once they do, the other 8 people can sit in 8 ! ways since there are no other restrictions. Hence the total number of ways is $(2 \cdot 8+8 \cdot 7) 8!=9 \cdot 8 \cdot 8!=8 \cdot 9$!.

5. Bridge

How many bridge hands have a suit distribution of $5,5,2,1$? (That is, you are playing with a standard 52 -card deck and you have 5 cards of one suit, 5 cards of another suit, 2 of another suit, and 1 of the last suit.)
Solution:
The number of hands here consists of two parts: first, we must count the number of ways to choose $5,5,2$, and 1 card[s] from 4 suits, each of which has 13 cards. These are all separate choices, so we simply multiply $\binom{13}{5} \cdot\binom{13}{5} \cdot\binom{13}{2} \cdot\binom{13}{1}$. Now, we must assign from which two suits we choose 5 cards, and from which we choose 2, and which we choose only 1 . We first choose the 2 suits out of 4 where we choose 5 cards - this is just $\binom{4}{2}$. Finally, there are 2 ways to assign the remaining two suits to 2 different sets of cards - applying the product rule to all this gives the below:
$\binom{13}{5}\binom{13}{5}\binom{13}{2}\binom{13}{1} \cdot\binom{4}{2} \cdot 2$

