

Foundations of Computing II

CSE 312: Foundations of Computing II

Skip Lists

TA's will run a review session in EEB 125 on Sunday from 4:30pm 6 pm.

- I will release a practice midterm later today or tomorrow.

We would like to find a simple data structure to implement the Set ADT. Some possible choices include:

1	2	3	4	5	6	7	8
${ }_{13 \text { stion }}$	ist[1]	114t[2]	114tt[3]	${ }_{115 \mathrm{st} \text { [4] }}$	${ }_{\text {11st [5] }}$	118t[(6)	

We would like to find a simple data structure to implement the Set ADT. Some possible choices include:

list

We would like to find a simple data structure to implement the Set ADT. Some possible choices include:

list

We would like to find a simple data structure to implement the Set ADT. Some possible choices include:

1	2	3	4	5	6	7	8
$1 \mathrm{list[0]}$	$1 . \mathrm{st}[1]$	$1 \mathrm{ist}[2]$	$1 \mathrm{ist}[3]$	$1 . \mathrm{st}[4]$	$1 \mathrm{ist}[5]$	$1 \mathrm{ist}[6]$	$1 . \mathrm{st}[7]$

list

What if we combined these ideas? Could we get better behavior?

Skip Lists: The Idea

Skip Lists: Find

Skip Lists: Insert

Definition (With High Probability)
We say an event, parametrized on n, E_{n}, happens with high probability when $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(E_{n}\right)=1$.

Definition (Union Bound)
The probability that at least one of $\left\{A_{1}, \ldots, A_{n}\right\}$ happens is less than or equal to the sum of their probabilities. That is:

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\cdots+\operatorname{Pr}\left(A_{n}\right)
$$

Skip Lists: Analyzing Expected Height

Skip Lists: Analyzing Expected Height

Let E_{i} be the event that some element is on the i th level. Note that this is the same as the Skip List having height i or larger.

Let x be a single entry of the Skip List, and $E_{x, i}$ be the event that x is on the i th level. Then, $\operatorname{Pr}\left(E_{x, i}\right)=\left(\frac{1}{2}\right)^{i}$.

Skip Lists: Analyzing Expected Height

Skip Lists: Analyzing Expected Height

By the union bound, the event that any entry reaches the i th level is less than the sum of their probabilities. That is: $\operatorname{Pr}\left(E_{i}\right) \leq \frac{n}{2^{i}}$.

Let $c \geq 2$ be a natural number constant.
Now, consider $\operatorname{Pr}\left(E_{c \lg n}\right) \leq \frac{n}{2^{c \lg n}}=\frac{n}{\left(2^{\lg n}\right)^{c}}=\frac{n}{n^{c}}=\frac{1}{n^{c-1}}$.
Then, $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\overline{E_{c \lg n}}\right) \leq \lim _{n \rightarrow \infty} 1-\frac{1}{n^{c-1}}=1$

Skip Lists: Analyzing Expected Space

Let E_{i} be the event that some element is on the i th level. Note that this is the same as the Skip List having height i or larger.

Let x be a single entry of the Skip List, and $E_{x, i}$ be the event that x is on the i th level. Then, $\operatorname{Pr}\left(E_{x, i}\right)=\left(\frac{1}{2}\right)^{i}$.

Let E_{i} be the event that some element is on the i th level. Note that this is the same as the Skip List having height i or larger.

Let x be a single entry of the Skip List, and $E_{x, i}$ be the event that x is on the i th level. Then, $\operatorname{Pr}\left(E_{x, i}\right)=\left(\frac{1}{2}\right)^{i}$.

Let X be a r.v. for the number of nodes in the Skip List. Then, define X_{i} as an r.v. for the number of nodes on level i. Finally, let H be the height of the skip list.

Then, $X=\sum_{i=0}^{H} X_{i}$. So, $\mathbb{E}[X]=\sum_{i=0}^{H} \mathbb{E}\left[X_{i}\right]=\sum_{i=0}^{H} \sum_{x \in L} \operatorname{Pr}\left(E_{x, i}\right)<\sum_{i=0}^{\infty} \frac{n}{2^{i}}=2 n$.

Skip Lists: Analyzing Expected Runtime of Find

Skip Lists: Analyzing Expected Runtime of Find

list

Let X be a r.v. for the number of node accesses in a single find operation. Then, $X=D+R$ where D is the number of "down" movements and R is the number of "right" movements. Furthermore, let R_{i} be the number of "right" movements on level i. Note that

$$
\mathbb{E}[X]=\mathbb{E}[D]+\mathbb{E}[R]=\mathcal{O}(\lg n)+\sum \mathbb{E}\left[R_{i}\right]
$$

Skip Lists: Analyzing Expected Runtime of Find

Skip Lists: Analyzing Expected Runtime of Find

Consider a single row of the find operation. In particular, consider the keys that we visit on that row in reverse. We "go back left" until we hit a key that made it up to the $(i+1)$ st level. Since we're considering level i, we already know this key made it to level i; so, the probability that it makes it to level $i+1$ is just $1 / 2$. So, the expected number of keys we visit on level i is just the number of times we flip a coin until we get a HEADS which means $\mathbb{E}\left[R_{i}\right]=2$. So, $\mathbb{E}[X]=\mathcal{O}(\lg n)$.

Important Distributions

- Bernoulli (p)
- Binomial (n, p)
- Geometric (p)
- Uniform (a, b)
- Poisson (λ)

Linearity

- Adding Expectations DOES NOT require independence.
- Adding Variances DOES require independence.

