Lecture 16

Foundations of Computing II

CSE 312: Foundations of Computing II

Skip Lists

- TA's will run a review session in EEB 125 on Sunday from 4:30pm -6pm.
- I will release a practice midterm later today or tomorrow.

1	2	3	4	5	6	7	8
list[0]	list[1]	list[2]	list[3]	list[4]	list[5]	list[6]	list[7]

What if we combined these ideas? Could we get better behavior?

Skip Lists: The Idea

Skip Lists: Find

Definition (With High Probability)

We say an event, parametrized on *n*, E_n , happens with high probability when $\lim_{n\to\infty} \Pr(E_n) = 1$.

Definition (Union Bound)

The probability that at least one of $\{A_1, \ldots, A_n\}$ happens is less than or equal to the sum of their probabilities. That is:

 $\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) \leq \Pr(A_1) + \Pr(A_2) + \cdots + \Pr(A_n)$

Let E_i be the event that some element is on the *i*th level. Note that this is the same as the Skip List having height *i* or larger.

Let x be a single entry of the Skip List, and $E_{x,i}$ be the event that x is on the *i*th level. Then, $Pr(E_{x,i}) = \left(\frac{1}{2}\right)^i$.

By the union bound, the event that **any** entry reaches the *i*th level is less than the sum of their probabilities. That is: $Pr(E_i) \leq \frac{n}{2^i}$.

Let
$$c \ge 2$$
 be a natural number constant.
Now, consider $\Pr(E_{c \lg n}) \le \frac{n}{2^{c \lg n}} = \frac{n}{(2^{\lg n})^c} = \frac{n}{n^c} = \frac{1}{n^{c-1}}$.
Then, $\lim_{n \to \infty} \Pr(\overline{E_{c \lg n}}) \le \lim_{n \to \infty} 1 - \frac{1}{n^{c-1}} = 1$

Skip Lists: Analyzing Expected Space

Let E_i be the event that some element is on the *i*th level. Note that this is the same as the Skip List having height *i* or larger.

Let x be a single entry of the Skip List, and $E_{x,i}$ be the event that x is on the *i*th level. Then, $Pr(E_{x,i}) = \left(\frac{1}{2}\right)^i$.

Skip Lists: Analyzing Expected Space

Let E_i be the event that some element is on the *i*th level. Note that this is the same as the Skip List having height *i* or larger.

Let x be a single entry of the Skip List, and $E_{x,i}$ be the event that x is on the *i*th level. Then, $Pr(E_{x,i}) = \left(\frac{1}{2}\right)^i$.

Let X be a r.v. for the number of nodes in the Skip List. Then, define X_i as an r.v. for the number of nodes on level *i*. Finally, let H be the height of the skip list.

Then,
$$X = \sum_{i=0}^{H} X_i$$
. So, $\mathbb{E}[X] = \sum_{i=0}^{H} \mathbb{E}[X_i] = \sum_{i=0}^{H} \sum_{x \in L} \Pr(E_{x,i}) < \sum_{i=0}^{\infty} \frac{n}{2^i} = 2n$.

Let X be a r.v. for the number of node accesses in a single find operation. Then, X = D + R where D is the number of "down" movements and R is the number of "right" movements. Furthermore, let R_i be the number of "right" movements on level *i*. Note that

$$\mathbb{E}[X] = \mathbb{E}[D] + \mathbb{E}[R] = \mathcal{O}(\lg n) + \sum \mathbb{E}[R_i]$$

Consider a single row of the find operation. In particular, consider the keys that we visit on that row in reverse. We "go back left" until we hit a key that made it up to the (i+1)st level. Since we're considering level i, we already know this key made it to level i; so, the probability that it makes it to level i+1 is just 1/2. So, the expected number of keys we visit on level i is just the number of times we flip a coin until we get a HEADS which means $\mathbb{E}[R_i] = 2$. So, $\mathbb{E}[X] = \mathcal{O}(\lg n)$.

Some Important Reminders for the Midterm

Important Distributions

- Bernoulli(p)
- Binomial(n, p)
- Geometric(p)
- Uniform(a, b)
- Poisson (λ)

Linearity

- Adding Expectations DOES NOT require independence.
- Adding Variances DOES require independence.