

Foundations of Computing II

CSE 312: Foundations of Computing II

Sampling \& Shuffling

Imagine you have a large data set with N items, and you'd like to get a representative sample of the data with $n \ll N$ items.

Imagine you have a large data set with N items, and you'd like to get a representative sample of the data with $n \ll N$ items.

This problem comes up a lot due to the prevalence of "big data":

- Physical measurements (from science)

Medical data (genome sequences, time series)

- Activity data (social network activity)
- Web-server logs
- Financial data

Imagine you have a large data set with N items, and you'd like to get a representative sample of the data with $n \ll N$ items.

This problem comes up a lot due to the prevalence of "big data":

- Physical measurements (from science)

Medical data (genome sequences, time series)

- Activity data (social network activity)
- Web-server logs
- Financial data

Some immediate concerns:

- We might have too much data to store in memory

Imagine you have a large data set with N items, and you'd like to get a representative sample of the data with $n \ll N$ items.

This problem comes up a lot due to the prevalence of "big data":

- Physical measurements (from science)

Medical data (genome sequences, time series)

- Activity data (social network activity)
- Web-server logs
- Financial data

Some immediate concerns:

- We might have too much data to store in memory

We might not know what N is

Starting Out Samp-ly

Let's try the simplest algorithm we can think of:

```
    N - number of total records
Z n - number of records we want in the sample
    S - a stream of the records in the data set
S A sample of the N records, ideally of size n
< ability n/N.
SAMPLE1(N,n,S):
    result = {}
    while HasNext(S):
        record = Next(S)
        if FlipCoin(n/N) == HEADS:
        result.add(record)
        return result
```

Oor each record, independently include in the sample with prob-

Some questions:
Are there any issues with SAMPLE1?

Starting Out Samp-ly

Let's try the simplest algorithm we can think of:

```
    N - number of total records
Z n - number of records we want in the sample
    S - a stream of the records in the data set
S A sample of the N records, ideally of size n
< ability }n/N\mathrm{ .
SAMPLE1(N,n,S):
    result = {}
    while HasNext(S):
        record = Next(S)
        if FlipCoin(n/N) == HEADS:
            result.add(record)
        return result
```

© For each record, independently include in the sample with prob-

Some questions:
Are there any issues with SAMPLE1?
Let M be the number of elements we choose. What is $\mathbb{E}[M]$?

Starting Out Samp-ly

Let's try the simplest algorithm we can think of:

$$
\begin{aligned}
& N \text { - number of total records } \\
& \text { z } n \text { - number of records we want in the sample } \\
& S \text { - a stream of the records in the data set } \\
& \text { A sample of the } N \text { records, ideally of size } n \\
& \text { For each record, independently include in the sample with prob- } \\
& \text { ability } n / N \text {. }
\end{aligned}
$$

```
Sample1( }N,n,S)
    result = {}
    while HasNext(S):
        record = Next(S)
        if FlipCoin(n/N) == HEADS:
        result.add(record)
    return result
```

Some questions:

- Are there any issues with SAMPLE1?

Let M be the number of elements we choose. What is $\mathbb{E}[M]$?
Let M be the number of elements we choose. What is $\operatorname{Var}(M)$?

Starting Out Samp-ly

N - number of total records
Z n - number of records we want in the sample
S - a stream of the records in the data set
A sample of the N records, ideally of size n
For each record, independently include in the sample with probability n / N.
$\operatorname{SAMPLE} 1(N, n, S)$:
1 result = \{\}
2 while HasNext(S):
record $=\operatorname{Next}(S)$
if $\operatorname{FlipCoin}(n / N)==$ HEADS:
result.add(record)
return result

Issue with SAMPLE1

Starting Out Samp-ly

N - number of total records
Z n - number of records we want in the sample
S - a stream of the records in the data set
A sample of the N records, ideally of size n
For each record, independently include in the sample with probability n / N.

SAMPLE1 (N, n, S) :
1
result = \{\}
while $\operatorname{HasNext}(S)$:
record $=\operatorname{Next}(S)$
if $\operatorname{FlipCoin}(n / N)==$ HEADS:
result.add(record)
return result

Issue with SAMPLE1

The algorithm doesn't guarantee us a sample of exactly n elements. How can we figure out exactly how bad it does?

Starting Out Samp-ly

N - number of total records
Z n - number of records we want in the sample
S - a stream of the records in the data set
A sample of the N records, ideally of size n
For each record, independently include in the sample with probability n / N.
$\operatorname{SAMPLE} 1(N, n, S)$:
1 result = \{\}
2
while HasNext (S):
record $=\operatorname{Next}(S)$
if FlipCoin $(n / N)==$ HEADS:
result.add(record)
return result

Let M be a r.v. for the number of records in the sample. Let M_{i} for $1 \leq i \leq N$ be i.r.v.'s for the events "the i th record is selected".
N - number of total records
Z n - number of records we want in the sample
S - a stream of the records in the data set
A sample of the N records, ideally of size n
For each record, independently include in the sample with probability n / N.

SAMPLE1 (N, n, S) :
result = \{\}
while HasNext (S):
record $=\operatorname{Next}(S)$
if $\operatorname{FlipCoin}(n / N)==$ HEADS: result.add(record)
return result

Let M be a r.v. for the number of records in the sample. Let M_{i} for $1 \leq i \leq N$ be i.r.v.'s for the events "the i th record is selected". Note that $\mathbb{E}[M]=\mathbb{E}\left[\sum_{i=1}^{N} M_{i}\right]=\sum_{i=1}^{N} \mathbb{E}\left[M_{i}\right]=\sum_{i=1}^{N} \frac{n}{N}=n$.

Starting Out Samp-ly

N - number of total records
乙 n - number of records we want in the sample
S - a stream of the records in the data set
A sample of the N records, ideally of size n
For each record, independently include in the sample with probability n / N.
$\operatorname{SAMPLE} 1(N, n, S)$:
result $=\{ \}$
while HasNext (S):
record $=\operatorname{Next}(S)$
if FlipCoin $(n / N)==$ HEADS: result.add(record)
return result
Let M be a r.v. for the number of records in the sample. Let M_{i} for $1 \leq i \leq N$ be i.r.v.'s for the events "the i th record is selected".

```
    N - number of total records
Z n - number of records we want in the sample
    S - a stream of the records in the data set
S A sample of the N records, ideally of size n
< ability }n/N\mathrm{ .
Sample1(N,n,S):
    result = {}
    while HasNext(S):
        record = Next(S)
        if FlipCoin(n/N) == HEADS:
        result.add(record)
    return result
```

U For each record, independently include in the sample with prob-

Let M be a r.v. for the number of records in the sample. Let M_{i} for $1 \leq i \leq N$ be i.r.v.'s for the events "the i th record is selected". Note that the M_{i} 's are independent.
$\operatorname{Var}(M)=\operatorname{Var}\left(\sum_{i=1}^{N} M_{i}\right)=\sum_{i=1}^{N} \operatorname{Var}\left(M_{i}\right)=\sum_{i=1}^{N} \frac{n}{N}\left(1-\frac{n}{N}\right)=n\left(1-\frac{n}{N}\right)$.

Another Idea

What if we used a different probability for each record based on how many are already selected? That is:

Another Idea

What if we used a different probability for each record based on how many are already selected? That is:

What probability should the $(t+1)$ st record be selected with if m records are already selected?

Another Idea

What if we used a different probability for each record based on how many are already selected? That is:

What probability should the $(t+1)$ st record be selected with if m records are already selected?

```
ways to choose remaining records including record \(t+1\) ways to choose remaining records
```


Another Idea

What if we used a different probability for each record based on how many are already selected? That is:

What probability should the $(t+1)$ st record be selected with if m records are already selected?

Another Idea

N - number of total records
Z n - number of records we want in the sample
S - a stream of the records in the data set
A sample of the N records of exactly size n
U For each record, include in the sample with probability proportional to how many more records we need.
$\operatorname{SAMPLE} 2(N, n, S)$:
result = \{\}
$\mathrm{t}=0$ \# number of processed records
$\mathrm{m}=0$ \# number of selected records
while m < n :
record $=\operatorname{Next}(S)$
if FlipCoin $\left(\frac{n-m}{N-t}\right)==$ HEADS:
result.add(record)
m += 1 \# we selected a new record
t += 1 \# we processed a new record
return result

Another Idea

```
SAMPLE2(N,n,S):
    result = {}
    t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
    record = Next(S)
    if FlipCoin (\frac{n-m}{N-t})== HEADS:
            result.add(record)
            m += 1 # we selected a new record
        t += 1 # we processed a new record
    return result
```

- Does the algorithm always terminate?
- What are $\mathbb{E}[m]$ and $\operatorname{Var}(m)$?
- Does the algorithm guarantee us an unbiased sample?

```
SAMPLE2(N, n, S):
    result = {}
    t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
        record = Next(S)
        if FlipCoin}(\frac{n-m}{N-t})== HEADS
            result.add(record)
            m += 1 # we selected a new record
        t += 1 # we processed a new record
    return result
```

To show SAMPLE2 terminates, we prove:
Theorem (Termination of SAmple2)
As long as $N \geq n$, whenever $t=N-(n-m)$, we select all remaining m records which makes $m=n$.

Proof.

```
SAMPLE2(N, n, S):
    result = {}
    t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
        record = Next(S)
        if FlipCoin}(\frac{n-m}{N-t})== HEADS
            result.add(record)
            m += 1 # we selected a new record
        t += 1 # we processed a new record
    return result
```

To show SAMPLE2 terminates, we prove:
Theorem (Termination of SAmple2)
As long as $N \geq n$, whenever $t=N-(n-m)$, we select all remaining m records which makes $m=n$.

Proof.
Since $t=N-(n-m), N-t=n-m$. So, $\frac{n-m}{N-t}=\frac{n-m}{n-m}=1$

$\mathbb{E}[m]$ and $\operatorname{Var}(m)$ in Sample2

```
SAMPLE2( }N,n,S)
    result = {}
    2 t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
    record = Next(S)
    if FlipCoin}(\frac{n-m}{N-t})== HEADS
        result.add(record)
            m += 1 # we selected a new record
        t += 1 # we processed a new record
    return result
```

```
Sample2( }N,n,S)
    result = {}
    t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
    record = Next(S)
    if FlipCoin (\frac{n-m}{N-t})== HEADS:
        result.add(record)
            m += 1 # we selected a new record
        t += 1 # we processed a new record
    return result
```

Note that $m=n$ at the end of the algorithm because of the while loop condition. So, $\mathbb{E}[m]=n$. Furthermore, $\mathbb{E}\left[m^{2}\right]=n^{2}$. So, $\operatorname{Var}(m)=\mathbb{E}\left[m^{2}\right]-(\mathbb{E}[m])^{2}=n^{2}-n^{2}=0$.

Does Sample2 give an unbiased sample?

```
SAMPLE2(N, n, S):
    result = {}
    t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
        record = Next(S)
        if FlipCoin}(\frac{n-m}{N-t})== HEADS
        result.add(record)
        m += 1 # we selected a new record
        t += 1 # we processed a new record
    return result
```

Simple Case: Select First Element
The first element is selected with probability

Does Sample2 give an unbiased sample?

```
SAMPLE2( }N,n,S)
    result = {}
    t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
        record = Next(S)
        if FlipCoin}(\frac{n-m}{N-t})== HEADS
            result.add(record)
            m += 1 # we selected a new record
        t += 1 # we processed a new record
    return result
```

Simple Case: Select First Element
The first element is selected with probability $\frac{n-0}{N-0}=\frac{n}{N}$, because at that point in time, the number of processed and selected records are both 0 .

Does Sample2 give an unbiased sample?

```
Sample2( }N,n,S)
    result = {}
    t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
        record = Next(S)
        if FlipCoin( }\frac{n-m}{N-t})== HEADS
        result.add(record)
        m += 1 # we selected a new record
        t += 1 # we processed a new record
    return result
```

Simple Case: Second Element
The second element is selected with probability:

```
SAMPLE2 \((N, n, S)\) :
    result = \{\}
    \(\mathrm{t}=0\) \# number of processed records
    \(\mathrm{m}=0\) \# number of selected records
    while \(m\) < \(n\) :
    record \(=\operatorname{Next}(S)\)
    if FlipCoin \(\left(\frac{n-m}{N-t}\right)==\) HEADS:
        result.add(record)
        m += 1 \# we selected a new record
    t += 1 \# we processed a new record
    return result
```

Simple Case: Second Element
The second element is selected with probability:

select 1 st select $2 n d$ element element
do not select select 2nd 1 st element element

```
SAMPLE2(N,n,S):
    result = {}
    t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
        record = Next(S)
        if FlipCoin ( }\frac{n-m}{N-t})== HEADS
        result.add(record)
        m += 1 # we selected a new record
        t += 1 # we processed a new record
    return result
```

Generalizing The Idea
Define $p(m, t)$ as the probability that exactly m records are selected from the first t.

$$
p(m, t)=
$$

```
SAMPLE2(N, n, S):
    result = {}
    t = 0 # number of processed records
    m = 0 # number of selected records
    while m < n:
    record = Next(S)
    if FlipCoin}(\frac{n-m}{N-t})== HEADS
        result.add(record)
        m += 1 # we selected a new record
    t += 1 # we processed a new record
    return result
```

Generalizing The Idea
Define $p(m, t)$ as the probability that exactly m records are selected from the first t.

$$
p(m, t)=\frac{\text { first } t}{\binom{t}{m}\binom{N-t}{n-m}} \underset{\binom{N}{n}}{\text { chomaining }}
$$

```
SAMPLE2( }N,n,S)
1
2

Generalizing The Idea
Define \(p(m, t)\) as the probability that exactly \(m\) records are selected from the first \(t\).
Then:
\[
\operatorname{Pr}(\text { element } t+1 \text { is selected })=\sum_{m=0}^{t} \frac{n-m}{N-t} p(m, t)
\]
```

SAMPLE2(N, n, S):
result = {}
t = 0 \# number of processed records
m = 0 \# number of selected records
while m < n:
record = Next(S)
if FlipCoin}(\frac{n-m}{N-t})== HEADS
result.add(record)
m += 1 \# we selected a new record
t += 1 \# we processed a new record
return result

```

Generalizing The Idea
Define \(p(m, t)\) as the probability that exactly \(m\) records are selected from the first \(t\).
Then:
\(\operatorname{Pr}(\) element \(t+1\) is selected \()=\sum_{m=0}^{t} \frac{n-m}{N-t} p(m, t)=\frac{\frac{(N-1)!}{(n-1)!(N-n)!}}{\binom{N}{n}}=\frac{n}{N}\)

\section*{Now What?}

Our algorithm works great if. . .
we know \(N\) in advance
the records actually fit in memory

\section*{Now What?}

Our algorithm works great if. . .
- we know \(N\) in advance
- the records actually fit in memory

How about this?
\(n\) - number of records we want in the sample
\(S\) - a stream of the records in the data set
A sample of the stream of records of exactly size \(n\)
U Keep track of a "current" total sample and repeatedly update the sample with new records based on how many we've seen.
```

RESERvoirSample(}n,S)
reservoir = [] \# pool of records on disk
chosen = [] \# mapping to reservoir records
for i = 1 to n:
record = Next(S)
reservoir.add(record)
chosen[i] = i
t = n \# number of records processed
m = n \# size of reservoir
while HasNext(S):
record = Next(S)
t += 1
M = RollDie(t)
if M \leq n:
reservoir.add(record)
m += 1
chosen[M] = m
sample = {}
for i to m:
record = Next(reservoir)
if i\inchosen:
sample.add(record)
return sample

```

\section*{Reservoir Sampling in Three Steps}
- Initialize by choosing the first \(n\) records automatically.
- For the \(t\)-th record after the first \(n\), evict record \(i\) with probability \(\frac{1}{t}\).
- Recover the final set of records from the reservoir.

Does each item end up in the sample with equal probability?
What is the expected number of records in the reservoir?
- What about the variance of the size of the reservoir?

\section*{Equal Probabilities?}

Reservoir Sampling in Three Steps
- Initialize by choosing the first \(n\) records automatically.
- For the \(t\)-th record after the first \(n\), evict record \(i\) with probability \(\frac{1}{t}\).
- Recover the final set of records from the reservoir.

\section*{Reservoir Sampling in Three Steps}
- Initialize by choosing the first \(n\) records automatically.
- For the \(t\)-th record after the first \(n\), evict record \(i\) with probability \(\frac{1}{t}\).
- Recover the final set of records from the reservoir.

First \(n\) are always added at the beginning; so, to be selected, they just need to be never evicted.
That is:
\[
\left(\frac{n}{n}\right)\left(\frac{n}{n+1}\right) \cdots\left(\frac{N-1}{N}\right)
\]

For the remaining records, we must (1) select them, and (2) never evict them: That is:
\[
\left(\frac{n}{t}\right)\left(\frac{t}{t+1}\right) \cdots\left(\frac{N-1}{N}\right)
\]

\section*{Expected Size of Reservoir}

Reservoir Sampling in Three Steps
- Initialize by choosing the first \(n\) records automatically.
- For the \(t\)-th record after the first \(n\), evict record \(i\) with probability \(\frac{1}{t}\).
- Recover the final set of records from the reservoir.

\section*{Expected Size of Reservoir}

\section*{Reservoir Sampling in Three Steps}
- Initialize by choosing the first \(n\) records automatically.
- For the \(t\)-th record after the first \(n\), evict record \(i\) with probability \(\frac{1}{t}\).
- Recover the final set of records from the reservoir.

The first \(n\) will definitely be added to the reservoir. For any remaining record, \(t\), it will be added with probability \(\frac{n}{t}\).
So, \(\mathbb{E}[m]=n+\sum_{t=n+1}^{N} \frac{n}{t}=n+n\left(H_{N}-H_{n}\right) \approx n+n \ln \left(\frac{N}{n}\right)\)

Reservoir Sampling in Three Steps
- Initialize by choosing the first \(n\) records automatically.
- For the \(t\)-th record after the first \(n\), evict record \(i\) with probability \(\frac{1}{t}\).
- Recover the final set of records from the reservoir.

Reservoir Sampling in Three Steps
- Initialize by choosing the first \(n\) records automatically.
- For the \(t\)-th record after the first \(n\), evict record \(i\) with probability \(\frac{1}{t}\).
- Recover the final set of records from the reservoir.

Since each inclusion is independent, we can add together the individual variances. Let \(m_{i}\) be the i.r.v. for if the \(i\) th record is chosen for the reservoir. Note that \(\operatorname{Var}\left(m_{i}\right)=\frac{n}{t}-\frac{n^{2}}{t^{2}}\).
So, \(\operatorname{Var}(m)=\sum \operatorname{Var}\left(m_{i}\right)=\sum_{i=n+1}^{N} \frac{n}{i}-\sum_{i=n+1}^{N} \frac{n^{2}}{i^{2}}=n\left(H_{N}-H_{n}\right)-n^{2}\left(\sum_{i=n+1}^{N} \frac{1}{i^{2}}\right)\).

Shuffling An Array

\section*{Shuffling An Array}21
```

NAIVESHUFFLE}(A)
for i = 1 to }|A|
swap(A[i], A[RollDie(|A|)])

```

\section*{Shuffling An Array}
```

NaIVESHUFFLE(A):
for i = 1 to |A|:
swap(A[i], A[RollDie(|A|)])

```

Each choice of random numbers is equally likely. There are \(n^{n}\) choices for each string of numbers. However, there are only \(n\) ! permutations of \(n\) numbers. These numbers are not equal, and often \(\frac{n^{n}}{n!} \notin \mathbb{Z}\). In particular, \(\frac{3^{3}}{3!}=\frac{27}{6} \notin \mathbb{Z}\).

\section*{Shuffling An Array}
```

 NaiveShuffle(A):
 for i = 1 to |A|:
 swap(A[i], A[RollDie(|A|)])
    ```
    Fischer YatesShuffle \((A)\) :
1 for \(i=1\) to \(|A|\) :
\(2 \operatorname{swap}(A[i], A[i+\operatorname{RollDie}(|A|-i)])\)

\section*{Shuffling An Array}
```

 NAIVESHUFFLE(A):
 for i = 1 to |A|:
 swap(A[i], A[RollDie(|A|)])
 Fischer YatesShuffle(}A\mathrm{):
 for i = 1 to |A|:
 swap(A[i], A[i + RollDie(|A| - i)])
    ```

Argument for why FY works: This is just the algorithmic version of why \(n\) ! counts permutations! Choose the first element from all of them, the second from the remaining, etc!```

