
Adam Blank Spring 2018Lecture 9

CSE
312

Foundations of Computing II

CSE 312: Foundations of Computing II

Sampling & Shuffling

Random Sampling 1

Imagine you have a large data set with N items, and you’d like to get a
representative sample of the data with n≪N items.

This problem comes up a lot due to the prevalence of “big data”:
Physical measurements (from science)

Medical data (genome sequences, time series)

Activity data (social network activity)

Web-server logs

Financial data

Some immediate concerns:
We might have too much data to store in memory
We might not know what N is

Random Sampling 1

Imagine you have a large data set with N items, and you’d like to get a
representative sample of the data with n≪N items.

This problem comes up a lot due to the prevalence of “big data”:
Physical measurements (from science)

Medical data (genome sequences, time series)

Activity data (social network activity)

Web-server logs

Financial data

Some immediate concerns:
We might have too much data to store in memory
We might not know what N is

Random Sampling 1

Imagine you have a large data set with N items, and you’d like to get a
representative sample of the data with n≪N items.

This problem comes up a lot due to the prevalence of “big data”:
Physical measurements (from science)

Medical data (genome sequences, time series)

Activity data (social network activity)

Web-server logs

Financial data

Some immediate concerns:
We might have too much data to store in memory

We might not know what N is

Random Sampling 1

Imagine you have a large data set with N items, and you’d like to get a
representative sample of the data with n≪N items.

This problem comes up a lot due to the prevalence of “big data”:
Physical measurements (from science)

Medical data (genome sequences, time series)

Activity data (social network activity)

Web-server logs

Financial data

Some immediate concerns:
We might have too much data to store in memory
We might not know what N is

Starting Out Samp-ly 2

Let’s try the simplest algorithm we can think of:
In

N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records, ideally of size n

A
lg For each record, independently include in the sample with prob-

ability n/N.

Sample1(N, n, S):
1 result = {}
2 while HasNext(S):
3 record = Next(S)
4 if FlipCoin(n/N) == HEADS:
5 result.add(record)
6 return result

Some questions:
Are there any issues with Sample1?

Let M be the number of elements we choose. What is E[M]?
Let M be the number of elements we choose. What is Var(M)?

Starting Out Samp-ly 2

Let’s try the simplest algorithm we can think of:
In

N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records, ideally of size n

A
lg For each record, independently include in the sample with prob-

ability n/N.

Sample1(N, n, S):
1 result = {}
2 while HasNext(S):
3 record = Next(S)
4 if FlipCoin(n/N) == HEADS:
5 result.add(record)
6 return result

Some questions:
Are there any issues with Sample1?
Let M be the number of elements we choose. What is E[M]?

Let M be the number of elements we choose. What is Var(M)?

Starting Out Samp-ly 2

Let’s try the simplest algorithm we can think of:
In

N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records, ideally of size n

A
lg For each record, independently include in the sample with prob-

ability n/N.

Sample1(N, n, S):
1 result = {}
2 while HasNext(S):
3 record = Next(S)
4 if FlipCoin(n/N) == HEADS:
5 result.add(record)
6 return result

Some questions:
Are there any issues with Sample1?
Let M be the number of elements we choose. What is E[M]?
Let M be the number of elements we choose. What is Var(M)?

Starting Out Samp-ly 3

In
N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records, ideally of size n

A
lg For each record, independently include in the sample with prob-

ability n/N.

Sample1(N, n, S):
1 result = {}
2 while HasNext(S):
3 record = Next(S)
4 if FlipCoin(n/N) == HEADS:
5 result.add(record)
6 return result

Issue with Sample1

The algorithm doesn’t guarantee us a sample of exactly n elements. How
can we figure out exactly how bad it does?

Starting Out Samp-ly 3

In
N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records, ideally of size n

A
lg For each record, independently include in the sample with prob-

ability n/N.

Sample1(N, n, S):
1 result = {}
2 while HasNext(S):
3 record = Next(S)
4 if FlipCoin(n/N) == HEADS:
5 result.add(record)
6 return result

Issue with Sample1
The algorithm doesn’t guarantee us a sample of exactly n elements. How
can we figure out exactly how bad it does?

Starting Out Samp-ly 4

In
N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records, ideally of size n

A
lg For each record, independently include in the sample with prob-

ability n/N.

Sample1(N, n, S):
1 result = {}
2 while HasNext(S):
3 record = Next(S)
4 if FlipCoin(n/N) == HEADS:
5 result.add(record)
6 return result

Let M be a r.v. for the number of records in the sample. Let Mi for
1 ≤ i ≤N be i.r.v.’s for the events “the ith record is selected”.

Note that

E[M] =E[
N

∑

i=1
Mi] =

N

∑

i=1
E[Mi] =

N

∑

i=1

n
N
= n.

Starting Out Samp-ly 4

In
N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records, ideally of size n

A
lg For each record, independently include in the sample with prob-

ability n/N.

Sample1(N, n, S):
1 result = {}
2 while HasNext(S):
3 record = Next(S)
4 if FlipCoin(n/N) == HEADS:
5 result.add(record)
6 return result

Let M be a r.v. for the number of records in the sample. Let Mi for
1 ≤ i ≤N be i.r.v.’s for the events “the ith record is selected”. Note that

E[M] =E[
N

∑

i=1
Mi] =

N

∑

i=1
E[Mi] =

N

∑

i=1

n
N
= n.

Starting Out Samp-ly 5

In
N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records, ideally of size n

A
lg For each record, independently include in the sample with prob-

ability n/N.

Sample1(N, n, S):
1 result = {}
2 while HasNext(S):
3 record = Next(S)
4 if FlipCoin(n/N) == HEADS:
5 result.add(record)
6 return result

Let M be a r.v. for the number of records in the sample. Let Mi for
1 ≤ i ≤N be i.r.v.’s for the events “the ith record is selected”.

Note that
the Mi’s are independent.

Var(M) =Var(
N

∑

i=1
Mi) =

N

∑

i=1
Var(Mi) =

N

∑

i=1

n
N
(1−

n
N
) = n(1−

n
N
).

Starting Out Samp-ly 5

In
N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records, ideally of size n

A
lg For each record, independently include in the sample with prob-

ability n/N.

Sample1(N, n, S):
1 result = {}
2 while HasNext(S):
3 record = Next(S)
4 if FlipCoin(n/N) == HEADS:
5 result.add(record)
6 return result

Let M be a r.v. for the number of records in the sample. Let Mi for
1 ≤ i ≤N be i.r.v.’s for the events “the ith record is selected”. Note that
the Mi’s are independent.

Var(M) =Var(
N

∑

i=1
Mi) =

N

∑

i=1
Var(Mi) =

N

∑

i=1

n
N
(1−

n
N
) = n(1−

n
N
).

Another Idea 6

What if we used a different probability for each record based on how
many are already selected? That is:

What probability should the (t +1)st record be selected with if
m records are already selected?

ways to choose remaining records including record t +1
ways to choose remaining records

=

(
N−t−1
n−m−1)

(
N−t
n−m)

=

n−m
N − t

Another Idea 6

What if we used a different probability for each record based on how
many are already selected? That is:

What probability should the (t +1)st record be selected with if
m records are already selected?

ways to choose remaining records including record t +1
ways to choose remaining records

=

(
N−t−1
n−m−1)

(
N−t
n−m)

=

n−m
N − t

Another Idea 6

What if we used a different probability for each record based on how
many are already selected? That is:

What probability should the (t +1)st record be selected with if
m records are already selected?

ways to choose remaining records including record t +1
ways to choose remaining records

=

(
N−t−1
n−m−1)

(
N−t
n−m)

=

n−m
N − t

Another Idea 6

What if we used a different probability for each record based on how
many are already selected? That is:

What probability should the (t +1)st record be selected with if
m records are already selected?

ways to choose remaining records including record t +1
ways to choose remaining records

=

(
N−t−1
n−m−1)

(
N−t
n−m)

=

n−m
N − t

Another Idea 7

In
N – number of total records
n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the N records of exactly size n

A
lg For each record, include in the sample with probability propor-

tional to how many more records we need.

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Another Idea 8

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Does the algorithm always terminate?
What are E[m] and Var(m)?
Does the algorithm guarantee us an unbiased sample?

Termination of Sample2 9

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

To show Sample2 terminates, we prove:

Theorem (Termination of Sample2)
As long as N ≥ n, whenever t =N −(n−m), we select all remaining m
records which makes m = n.

Proof.

Since t =N −(n−m), N − t = n−m. So, n−m
N − t

=

n−m
n−m

= 1

Termination of Sample2 9

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

To show Sample2 terminates, we prove:

Theorem (Termination of Sample2)
As long as N ≥ n, whenever t =N −(n−m), we select all remaining m
records which makes m = n.

Proof.

Since t =N −(n−m), N − t = n−m. So, n−m
N − t

=

n−m
n−m

= 1

E[m] and Var(m) in Sample2 10

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Note that m = n at the end of the algorithm because of the while loop
condition. So, E[m] = n. Furthermore, E[m2

] = n2. So,
Var(m) =E[m2

]−(E[m])2 = n2
−n2
= 0.

E[m] and Var(m) in Sample2 10

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Note that m = n at the end of the algorithm because of the while loop
condition. So, E[m] = n. Furthermore, E[m2

] = n2. So,
Var(m) =E[m2

]−(E[m])2 = n2
−n2
= 0.

Does Sample2 give an unbiased sample? 11

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Simple Case: Select First Element

The first element is selected with probability

n−0
N −0

=

n
N

, because at that
point in time, the number of processed and selected records are both 0.

Does Sample2 give an unbiased sample? 11

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Simple Case: Select First Element

The first element is selected with probability n−0
N −0

=

n
N

, because at that
point in time, the number of processed and selected records are both 0.

Does Sample2 give an unbiased sample? 12

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Simple Case: Second Element
The second element is selected with probability:

n
N
(

n−1
N −1

)+(1−
n
N
)(

n
N −1

) =

n
N

select 1st
element

select 2nd
element

do not select
1st element

select 2nd
element

Does Sample2 give an unbiased sample? 12

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Simple Case: Second Element
The second element is selected with probability:

n
N
(

n−1
N −1

)+(1−
n
N
)(

n
N −1

) =

n
N

select 1st
element

select 2nd
element

do not select
1st element

select 2nd
element

Does Sample2 give an unbiased sample? 13

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Generalizing The Idea
Define p(m,t) as the probability that exactly m records are selected from
the first t.

p(m,t) =

(
t
m)(

N−t
n−m)

(
N
n)

choose m of
first t

choose
remaining

choose all

Does Sample2 give an unbiased sample? 13

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Generalizing The Idea
Define p(m,t) as the probability that exactly m records are selected from
the first t.

p(m,t) =
(

t
m)(

N−t
n−m)

(
N
n)

choose m of
first t

choose
remaining

choose all

Does Sample2 give an unbiased sample? 14

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Generalizing The Idea
Define p(m,t) as the probability that exactly m records are selected from
the first t.
Then:

Pr(element t +1 is selected) =
t

∑

m=0

n−m
N − t

p(m,t)

=

(N−1)!
(n−1)!(N−n)!
(

N
n)

=

n
N

Does Sample2 give an unbiased sample? 14

Sample2(N, n, S):
1 result = {}
2 t = 0 # number of processed records
3 m = 0 # number of selected records
4 while m < n:
5 record = Next(S)
6 if FlipCoin(n−m

N−t) == HEADS:

7 result.add(record)
8 m += 1 # we selected a new record
9 t += 1 # we processed a new record

10 return result

Generalizing The Idea
Define p(m,t) as the probability that exactly m records are selected from
the first t.
Then:

Pr(element t +1 is selected) =
t

∑

m=0

n−m
N − t

p(m,t) =
(N−1)!

(n−1)!(N−n)!
(

N
n)

=

n
N

Now What? 15

Our algorithm works great if. . .
we know N in advance
the records actually fit in memory

How about this?

In

n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the stream of records of exactly size n

A
lg Keep track of a “current” total sample and repeatedly update

the sample with new records based on how many we’ve seen.

Now What? 15

Our algorithm works great if. . .
we know N in advance
the records actually fit in memory

How about this?

In

n – number of records we want in the sample
S – a stream of the records in the data set

O
ut A sample of the stream of records of exactly size n

A
lg Keep track of a “current” total sample and repeatedly update

the sample with new records based on how many we’ve seen.

Now What? 16

ReservoirSample(n, S):
1 reservoir = [] # pool of records on disk
2 chosen = [] # mapping to reservoir records
3 for i = 1 to n:
4 record = Next(S)
5 reservoir.add(record)
6 chosen[i] = i
7 t = n # number of records processed
8 m = n # size of reservoir

10 while HasNext(S):
11 record = Next(S)
12 t += 1
13 M = RollDie(t)
14 if M ≤ n:
15 reservoir.add(record)
16 m += 1
17 chosen[M] = m

18 sample = {}
19 for i to m:
20 record = Next(reservoir)
21 if i ∈ chosen:
22 sample.add(record)
23 return sample

Now What? 17

Reservoir Sampling in Three Steps
Initialize by choosing the first n records automatically.

For the t-th record after the first n, evict record i with probability 1
t
.

Recover the final set of records from the reservoir.

Does each item end up in the sample with equal probability?
What is the expected number of records in the reservoir?
What about the variance of the size of the reservoir?

Equal Probabilities? 18

Reservoir Sampling in Three Steps
Initialize by choosing the first n records automatically.

For the t-th record after the first n, evict record i with probability 1
t
.

Recover the final set of records from the reservoir.

First n are always added at the beginning; so, to be selected, they just
need to be never evicted.
That is:

(

n
n
)(

n
n+1
)⋯(

N −1
N
)

For the remaining records, we must (1) select them, and (2) never evict
them: That is:

(

n
t
)(

t
t +1
)⋯(

N −1
N
)

Equal Probabilities? 18

Reservoir Sampling in Three Steps
Initialize by choosing the first n records automatically.

For the t-th record after the first n, evict record i with probability 1
t
.

Recover the final set of records from the reservoir.

First n are always added at the beginning; so, to be selected, they just
need to be never evicted.
That is:

(

n
n
)(

n
n+1
)⋯(

N −1
N
)

For the remaining records, we must (1) select them, and (2) never evict
them: That is:

(

n
t
)(

t
t +1
)⋯(

N −1
N
)

Expected Size of Reservoir 19

Reservoir Sampling in Three Steps
Initialize by choosing the first n records automatically.

For the t-th record after the first n, evict record i with probability 1
t
.

Recover the final set of records from the reservoir.

The first n will definitely be added to the reservoir. For any remaining
record, t, it will be added with probability n

t
.

So, E[m] = n+
N

∑

t=n+1

n
t
= n+n(HN −Hn) ≈ n+n ln(

N
n
)

Expected Size of Reservoir 19

Reservoir Sampling in Three Steps
Initialize by choosing the first n records automatically.

For the t-th record after the first n, evict record i with probability 1
t
.

Recover the final set of records from the reservoir.

The first n will definitely be added to the reservoir. For any remaining
record, t, it will be added with probability n

t
.

So, E[m] = n+
N

∑

t=n+1

n
t
= n+n(HN −Hn) ≈ n+n ln(

N
n
)

Variance of Size of Reservoir 20

Reservoir Sampling in Three Steps
Initialize by choosing the first n records automatically.

For the t-th record after the first n, evict record i with probability 1
t
.

Recover the final set of records from the reservoir.

Since each inclusion is independent, we can add together the individual
variances. Let mi be the i.r.v. for if the ith record is chosen for the
reservoir. Note that Var(mi) =

n
t −

n2

t2 .

So, Var(m) =∑Var(mi) =
N

∑

i=n+1

n
i
−

N

∑

i=n+1

n2

i2
= n(HN −Hn)−n2

(

N

∑

i=n+1

1
i2
).

Variance of Size of Reservoir 20

Reservoir Sampling in Three Steps
Initialize by choosing the first n records automatically.

For the t-th record after the first n, evict record i with probability 1
t
.

Recover the final set of records from the reservoir.

Since each inclusion is independent, we can add together the individual
variances. Let mi be the i.r.v. for if the ith record is chosen for the
reservoir. Note that Var(mi) =

n
t −

n2

t2 .

So, Var(m) =∑Var(mi) =
N

∑

i=n+1

n
i
−

N

∑

i=n+1

n2

i2
= n(HN −Hn)−n2

(

N

∑

i=n+1

1
i2
).

Shuffling An Array 21

NaiveShuffle(A):
1 for i = 1 to ∣A∣:
2 swap(A[i], A[RollDie(∣A∣)])

Each choice of random numbers is equally likely. There are nn choices for
each string of numbers. However, there are only n! permutations of n
numbers. These numbers are not equal, and often nn

n! /∈Z. In particular,
33

3! =
27
6 /∈Z.

Shuffling An Array 21

NaiveShuffle(A):
1 for i = 1 to ∣A∣:
2 swap(A[i], A[RollDie(∣A∣)])

Each choice of random numbers is equally likely. There are nn choices for
each string of numbers. However, there are only n! permutations of n
numbers. These numbers are not equal, and often nn

n! /∈Z. In particular,
33

3! =
27
6 /∈Z.

Shuffling An Array 21

NaiveShuffle(A):
1 for i = 1 to ∣A∣:
2 swap(A[i], A[RollDie(∣A∣)])

Each choice of random numbers is equally likely. There are nn choices for
each string of numbers. However, there are only n! permutations of n
numbers. These numbers are not equal, and often nn

n! /∈Z. In particular,
33

3! =
27
6 /∈Z.

Shuffling An Array 22

NaiveShuffle(A):
1 for i = 1 to ∣A∣:
2 swap(A[i], A[RollDie(∣A∣)])

FischerYatesShuffle(A):
1 for i = 1 to ∣A∣:
2 swap(A[i], A[i + RollDie(∣A∣ − i)])

Argument for why FY works: This is just the algorithmic version of why
n! counts permutations! Choose the first element from all of them, the
second from the remaining, etc!

Shuffling An Array 22

NaiveShuffle(A):
1 for i = 1 to ∣A∣:
2 swap(A[i], A[RollDie(∣A∣)])

FischerYatesShuffle(A):
1 for i = 1 to ∣A∣:
2 swap(A[i], A[i + RollDie(∣A∣ − i)])

Argument for why FY works: This is just the algorithmic version of why
n! counts permutations! Choose the first element from all of them, the
second from the remaining, etc!

