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This is a variable:
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This is a random variable:

1 random_variable = (6)

These are also random variables:

2 Y—var— (3)

3 r_var_3 r_var_1l + r_var_2

m
Let Q be the sample space of an experiment.
Formally, we can view a random variable X as a function from Q to@
Looking at the examples above:

r_var_1:[2] - [2]
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This is a variable:

1 variable = 17

This is a random variable:

1 random_variable = (6)

These are also random variables:

1 r_var_1l = (2)
2 r_var_.2 = (3)
3 rovar_3 = r_var_1 + r_var_2

Let Q be the sample space of an experiment.
Formally, we can view a random variable X as a function from Q to S.

Looking at the examples above:
r_var_1:[2] - [2]
r_var_2:[3] - [3]
r_var_3:[2]x[3] - [5]
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We often want to talk about the probability mass function of a random
variable:

Pr_var_1(x) =Pr(r_var_1=x) == (for x€[2])

L A

Pr_var_2(x) =Pr(r_var_2=x) = s (for x € [3])

Dr_var_3(x) =Pr(r_var_3=x) =



Random Variables

1 r_var_1l = (2)
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(2)
(3)
r_var_1l + r_var_2

1 r_var_1
r_var_2
3 r_var_3
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We often want to talk about the probability mass function of a random

variable: :

Pr_var_1(x) =Pr(r_var_1=x)= 5 (for x € [2])

Pr_var_2(x) =Pr(r_var_2=x) = % (for x € [3])

1/6 ifx=2
2/6 ifx=3
Dr_var_3(x) =Pr(r_var_3=x) = 2;6 if x=4
1/6 ifx=5

So, to recap, a random variable is a variable in a program that depends
on a random process.
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A Little More Formal Now. ..

Definition (Random Variable)

A random variable is a variable in a randomized piece of code or

A random variable is a function from the sample space to another set.

Definition (Expected Value)

The expected value of a random variable X : Q > N with p.m.f. px(:) is
the weighted average value it takes on.

E[X]= ) X(s)Pr(s) = inpx(n)

sEQ n=0
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100 99
E[X]= ) ipx(i) = 100px (100) +80px (80) + > ipx (i)
pary =81

99

- (100)(02) + (80)(0.3) + 3" i
i 19



Bernoulli Random Variables

if (p) == HEADS:



Bernoulli Random Variables

1 if (p) == HEADS:
2 X=1

3 else:

4 X =0

We consider HEADS to be a “success” and TAILS to be a “failure”. Notice
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Bernoulli Random Variables

1 if (p) == HEADS:
2 X=1

3 else:

4 X =0

We consider HEADS to be a “success” and TAILS to be a “failure”. Notice
that the p.m.f. of X is

p if x=1

px(x):Pr(X:x):{l_p if x=0

If we have a r.v. distributed like X, we say X ~ Bernoulli(p).

What is E[X]?

E[X]=1xp+0x(1-p)=p
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1 for i =1 ton:

2 if (p) == HEADS:
3 X =1

4 else:

5 X; =0

Notice the following facts:
X; ~ Bernoulli(p)
All the coin flips are unrelated; so, the X;'s are independent.

n
Consider the r.v. ¥ = > X;.

i=1
When Y is the sum of n Bernoulli distributed r.v.'s, we say
Y ~ Binomial(n, p).

What is py(-)?

py (k) =Pr(Y =k) =
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Binomial Random Variables

for i = 1 to n:

N AN

a b wWwN =

X =0

Notice the following facts:
X; ~ Bernoulli(p)
All the coin flips are unrelated; so, the X;'s are independent.

n
Consider the r.v. ¥ = > X;.

i=1
When Y is the sum of n Bernoulli distributed r.v.'s, we say
Y ~ Binomial(n, p).

What is py(-)?

Py (k) = PI’(Y = k) = (: )Pk(l _p)n—k

i k(n )pk(l -p)" K =np (WTF?)

k

k=0



Geometric Random Variables

Z=0

while (p) !'= HEADS:
Z +=1

Z +=1

When Z is the number of coin flips up to and including the first HEADS,
we say Z ~ Geometric(p).

A W N

What is py(:)?

pg(k) = Pr@=K) -
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1 Z2=0

2 while (p) !'= HEADS:

3 Z+=1

4 7 +=1
When Z is the number of coin flips up to and including the first HEADS,
we say Z ~ Geometric(p).

What is py(:)?

py(k)=Pr(Y =k) = (1-p)"'p

What is E[Y]?

p 1

P
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Take the derivati
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Sum of Two Dice Rolls

What is pc(:)?

pc(x) =Pr(C=x) =

What is E[C]?

What is E[C?]?

O OI—\OIN\O|W O[O —

if x=2
if x=3
if x=4
if x=5
ifx=6

otherwise




