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CSE 312: Foundations of Computing II

Random Variables



Random Variables 1

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable = RollDie(6)

These are also random variables:
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2

Let Ω be the sample space of an experiment.
Formally, we can view a random variable X as a function from Ω to S.
Looking at the examples above:

r_var_1 ∶ [2] → [2]
r_var_2 ∶ [3] → [3]
r_var_3 ∶ [2]×[3] → [5]
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Random Variables 2

1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2

We often want to talk about the probability mass function of a random
variable:

pr_var_1(x) = Pr(r_var_1 = x) = 1
2

(for x ∈ [2])

pr_var_2(x) = Pr(r_var_2 = x) = 1
3

(for x ∈ [3])

pr_var_3(x) = Pr(r_var_3 = x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/6 if x = 2
2/6 if x = 3
2/6 if x = 4
1/6 if x = 5

So, to recap, a random variable is a variable in a program that depends
on a random process.
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A Little More Formal Now. . . 3

Definition (Random Variable)

A random variable is a variable in a randomized piece of code or
A random variable is a function from the sample space to another set.

Definition (Expected Value)
The expected value of a random variable X ∶Ω→N with p.m.f. pX(⋅) is
the weighted average value it takes on.

E[X] = ∑
s∈Ω

X(s)Pr(s) =
∞

∑
n=0

npX(n)
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Grading Policies: CSE 001 4

No student will ever get below 80.
20% of the students got a 100.
30% of the students got an 80.
The remaining 50% of the students got scores evenly distributed
between 81,82, . . . ,99.

Let X be the r.v. for a student’s score in CSE 001.

Then, the p.m.f. of
X is:

pX(i) = Pr(X = i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.3 if i = 80
0.5 1

19 if 81 ≤ i ≤ 99
0.2 if i = 100
0 otherwise

To get the expected value, we just use the formula:

E[X] =
100

∑
i=0

ipX(i) = 100pX(100)+80pX(80)+
99

∑
i=81

ipX(i)

= (100)(0.2)+(80)(0.3)+
99

∑
i=81

i
0.5
19
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Bernoulli Random Variables 5

1 if FlipCoin(p) == HEADS:
2 X = 1
3 else:
4 X = 0

We consider HEADS to be a “success” and TAILS to be a “failure”. Notice
that the p.m.f. of X is

pX(x) = Pr(X = x) =
⎧⎪⎪⎨⎪⎪⎩

p if x = 1
1− p if x = 0

If we have a r.v. distributed like X , we say X ∼Bernoulli(p).

What is E[X]?
E[X] = 1× p+0×(1− p) = p
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Binomial Random Variables 6

1 for i = 1 to n:
2 if FlipCoin(p) == HEADS:
3 Xi = 1
4 else:
5 Xi = 0

Notice the following facts:
Xi ∼Bernoulli(p)
All the coin flips are unrelated; so, the Xi’s are independent.

Consider the r.v. Y =
n

∑
i=1

Xi.

When Y is the sum of n Bernoulli distributed r.v.’s, we say
Y ∼Binomial(n, p).

What is pY (⋅)?

pY (k) = Pr(Y = k) = (n
k
)pk(1− p)n−k

What is E[Y ]?

E[Y ] =
n

∑
k=0

k(n
k
)pk(1− p)n−k = np (WTF?)
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Geometric Random Variables 7

1 Z = 0
2 while FlipCoin(p) != HEADS:
3 Z += 1
4 Z += 1

When Z is the number of coin flips up to and including the first HEADS,
we say Z ∼Geometric(p).

What is pY (⋅)?
pY (k) = Pr(Y = k) =

(1− p)k−1 p

What is E[Y ]?

E[Y ] =
∞

∑
k=1

k(1− p)k−1 p = p
∞

∑
k=1

k(1− p)k−1 = p
(1−(1− p))2 =

p
p2 =

1
p

Insight: This looks a lot like ∑∞k=1 kqk−1 which looks a lot like
∑∞k=0 qk = 1

1−x .
Take the derivative of both sides:

∞

∑
k=1

kqk−1 = d
dx
(
∞

∑
k=0

qk) = d
dx
( 1

1−x
) = 1
(1−x)2
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Sum of Two Dice Rolls 8

Consider the experiment:
1 A = RollDie(3)
2 B = RollDie(3)
3 C = A + B

What is pC(⋅)?

pC(x) = Pr(C = x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
9 if x = 2
2
9 if x = 3
3
9 if x = 4
2
9 if x = 5
1
9 if x = 6
0 otherwise

What is E[C]?

E[C] = 2× 1
9
+3× 2

9
+4× 3

9
+5× 2

9
+6× 1

9
= 4
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∑
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≈ 17.33
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