

Foundations of Computing II

CSE 312: Foundations of Computing II

Random Variables χ

Random Variables

This is a variable:
1 variable = 17

Random Variables

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable = RollDie(6)

Random Variables

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable $=$ RollDie(6)

These are also random variables:
$1 r_{-}$var_1 = Rolldie(2)
$2 r_{-} v a r_{-} 2=$ RollDie(3)
3 r_var_3 = r_{-}var_1 + $r_{-} v a r_{-} 2$

Random Variables

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable = Rolldie(6)

These are also random variables:
1 r_var_1 = Rolldie(2)
2 r_var_2 = Rolldie(3)
3 r_var_3 = r_var_1 + r_var_2
Let Ω be the sample space of an experiment.

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable $=$ RollDie(6)

These are also random variables:
1 r_var_1 = Rolldie(2)
2 r_var_2 = Rolldie(3)
3 r_var_3 = r_var_1 + r_var_2
Let Ω be the sample space of an experiment.
Formally, we can view a random variable X as a function from Ω to S.

This is a variable:
1 variable = 17

This is a random variable:

$$
[n]=\{1,2, \ldots, n\}
$$

1 random_variable = RollDie(6)

These are also random variables:
$1 \longdiv { r }$ _var_1 = RollDie(2)
2 T-var-z = Rotule(3)
$3 r_{-}$var_3 = r_{-}var_1 + $r_{-} v a r_{-} 2$
Let Ω be the sample space of an experiment.
Formally, we can view a random variable X as a function from Ω to S. Looking at the examples above:

$$
\begin{array}{ll}
\left.r_{-} \text {var _1:[2] }\right][2] \\
\Omega=[2] \times[3] & \Omega \rightarrow[5]
\end{array}
$$

This is a variable:
1 variable $=17$

This is a random variable:
1 random_variable = RollDie(6)

These are also random variables:
1 r_var_1 = Rolldie(2)
$2 r_{-} v a r_{-} 2=$ Rolldie(3)
3 r_var_3 = r_var_1 + r_var_2
Let Ω be the sample space of an experiment.
Formally, we can view a random variable X as a function from Ω to S. Looking at the examples above:

- r_var_1: [2] \rightarrow [2]
r_var_2:[3] \rightarrow [3]

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable = Rolldie(6)

These are also random variables:
1 r_var_1 = Rolldie(2)
$2 r_{-} v a r_{-} 2=$ Rolldie(3)
3 r_var_3 = r_var_1 + r_var_2
Let Ω be the sample space of an experiment.
Formally, we can view a random variable X as a function from Ω to S. Looking at the examples above:

- r_var_1: [2] \rightarrow [2]
r_var_2: [3] \rightarrow [3]
r_var_3: $[2] \times[3] \rightarrow[5]$

Random Variables

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\begin{aligned}
& p_{r_{-} \operatorname{var}_{-} 1}(x)=\operatorname{Pr}\left(r_{-} \text {var_ } 1=x\right)=\frac{1}{2}(\text { for } x \in[2]) \\
& \begin{array}{l}
\operatorname{Prvar2}(x)=\frac{1}{3} \text { for } x=1,2,3\left\{\begin{array}{l|l|l|}
\hline 1 & 2 & 3 \\
2 & 3 & 4 \\
\hline & P_{r \text { var } 3}(x) & =\left\{\begin{array}{l}
1 \\
\frac{1}{6} \\
\text { for } x=2,5 \\
\frac{2}{6} \\
\hline
\end{array} \text { for } x=3,4\right. \\
0 & \text { otherwise }
\end{array}\right.
\end{array}
\end{aligned}
$$

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\begin{aligned}
& p_{r_{-} \operatorname{var}_{-} 1}(x)=\operatorname{Pr}\left(r_{-} \text {var_1 }=x\right)=\frac{1}{2}(\text { for } x \in[2]) \\
& p_{r_{-} \operatorname{var}_{-} 2}(x)=\operatorname{Pr}\left(r_{-} \text {var_2 }=x\right)=\frac{1}{3}(\text { for } x \in[3])
\end{aligned}
$$

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\begin{aligned}
& p_{r_{-} v a r_{-} 1}(x)=\operatorname{Pr}\left(r_{-} \text {var } 1=x\right)=\frac{1}{2}(\text { for } x \in[2]) \\
& p_{r_{-} v a r_{-} 2}(x)=\operatorname{Pr}\left(r_{-} v a r_{-} 2=x\right)=\frac{1}{3}(\text { for } x \in[3]) \\
& p_{r_{-} v a r_{-} 3}(x)=\operatorname{Pr}\left(r_{-} v a r_{-} 3=x\right)=\left\{\begin{array}{l}
\end{array}\right.
\end{aligned}
$$

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\begin{aligned}
& p_{r_{-} \operatorname{var}_{-} 1}(x)=\operatorname{Pr}\left(r_{-} \text {var_ } 1=x\right)=\frac{1}{2}(\text { for } x \in[2]) \\
& p_{r_{-} v_{-} r_{-}}(x)=\operatorname{Pr}\left(r_{-} \text {var_} 2=x\right)=\frac{1}{3}(\text { for } x \in[3]) \\
& p_{r_{-} v_{-}}(x)=\operatorname{Pr}\left(r_{-} \text {var_ } 3=x\right)= \begin{cases}1 / 6 & \text { if } x=2 \\
2 / 6 & \text { if } x=3 \\
2 / 6 & \text { if } x=4 \\
1 / 6 & \text { if } x=5\end{cases}
\end{aligned}
$$

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\begin{aligned}
& p_{r_{-} \operatorname{var}_{-} 1}(x)=\operatorname{Pr}\left(r_{-} \text {var_ } 1=x\right)=\frac{1}{2}(\text { for } x \in[2]) \\
& p_{r_{-} v_{-} r_{-}}(x)=\operatorname{Pr}\left(r_{-} \text {var_} 2=x\right)=\frac{1}{3}(\text { for } x \in[3]) \\
& p_{r_{-} \operatorname{var}_{-} 3}(x)=\operatorname{Pr}\left(r_{-} \text {var_ } 3=x\right)= \begin{cases}1 / 6 & \text { if } x=2 \\
2 / 6 & \text { if } x=3 \\
2 / 6 & \text { if } x=4 \\
1 / 6 & \text { if } x=5\end{cases}
\end{aligned}
$$

So, to recap, a random variable is a variable in a program that depends on a random process.

Definition (Random Variable)

Definition (Random Variable)
A random variable is a variable in a randomized piece of code or A random variable is a function from the sample space to another set.

Definition (Random Variable)
A random variable is a variable in a randomized piece of code or A random variable is a function from the sample space to another set.

Definition (Expected Value)

The expected value of a random variable $X: \Omega \rightarrow \mathbb{N}$ with p.m.f. $p_{X}(\cdot)$ is the weighted average value it takes on.

A Little More Formal Now. . .

Definition (Random Variable)
A random variable is a variable in a randomized piece of code or A random variable is a function from the sample space to another set.

Definition (Expected Value)

The expected value of a random variable $X: \Omega \rightarrow \mathbb{N}$ with p.m.f. $p_{X}(\cdot)$ is the weighted average value it takes on.

$$
\mathbb{E}[X]=\sum_{s \in \Omega} X(s) \operatorname{Pr}(s)=\sum_{n=0}^{\infty} n p_{X}(n)
$$

$$
x_{1}
$$

$$
+x_{2}+\cdots+x_{n}
$$

$$
=h
$$

- No student will ever get below 80.
20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Let X be the riv. for a student's score in CSE 001.

$$
\mathbb{E}[x]=\sum^{n} n \cdot p_{x}(n) \rightarrow p_{x}(n)=\{
$$

Average grate in carl $=\frac{100 \cdot \frac{20}{700} \cdot n+80 \frac{30}{100} \cdot 20}{h}$

- No student will ever get below 80 .
- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Let X be the r.v. for a student's score in CSE 001. Then, the p.m.f. of X is:

$$
p_{X}(i)=\operatorname{Pr}(X=i)=\{
$$

No student will ever get below 80 .

- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Let X be the r.v. for a student's score in CSE 001. Then, the p.m.f. of X is:

$$
p_{X}(i)=\operatorname{Pr}(X=i)= \begin{cases}0.3 & \text { if } i=80 \\ 0.5 \frac{1}{19} & \text { if } 81 \leq i \leq 99 \\ 0.2 & \text { if } i=100 \\ 0 & \text { otherwise }\end{cases}
$$

To get the expected value, we just use the formula:

No student will ever get below 80 .

- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Let X be the r.v. for a student's score in CSE 001 . Then, the p.m.f. of X is:

$$
p_{X}(i)=\operatorname{Pr}(X=i)= \begin{cases}0.3 & \text { if } i=80 \\ 0.5 \frac{1}{19} & \text { if } 81 \leq i \leq 99 \\ 0.2 & \text { if } i=100 \\ 0 & \text { otherwise }\end{cases}
$$

To get the expected value, we just use the formula:

$$
\begin{aligned}
\mathbb{E}[X]=\sum_{i=0}^{100} i p_{X}(i) & =100 p_{X}(100)+80 p_{X}(80)+\sum_{i=81}^{99} i p_{X}(i) \\
& =(100)(0.2)+(80)(0.3)+\sum_{i=81}^{99} i \frac{0.5}{19}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
1 \\
2 \\
3 \\
3 \\
\text { else: } \mathrm{X}=1 \\
\mathrm{x}=0
\end{array}
\end{aligned}
$$

```
if FlipCoin \((p)\) == HEADS:
    \(X=1\)
    else:
        \(X=0\)
```

We consider HEADS to be a "success" and TAILS to be a "failure". Notice that the p.m.f. of X is

If we have a r.v. distributed like X, we say $X \sim \operatorname{Bernoulli}(p)$. What is $\mathbb{E}[X]$?

$$
\mathbb{E}[X]=
$$

```
if FlipCoin \((p)==\) HEADS:
        X = 1
else:
        X = 0
```

We consider HEADS to be a "success" and TAILS to be a "failure". Notice that the p.m.f. of X is

$$
p_{X}(x)=\operatorname{Pr}(X=x)= \begin{cases}p & \text { if } x=1 \\ 1-p & \text { if } x=0\end{cases}
$$

If we have a r.v. distributed like X, we say $X \sim \operatorname{Bernoulli}(p)$.
What is $\mathbb{E}[X]$?

$$
\mathbb{E}[X]=1 \times p+0 \times(1-p)=p
$$

$$
\begin{aligned}
& \text { for } \begin{aligned}
& i=1 \\
& \text { if Flincoin: }
\end{aligned} \\
& \begin{array}{l}
\text { if FlipCoin }(\underline{p})==\text { HEADS: } \\
X_{i}=1
\end{array} \\
& \begin{array}{l}
\text { else: } \\
X_{i}=0
\end{array} \\
& y=\sum_{i=1}^{n} x_{i}, \quad \cdots \cdots \cdots \cdots \\
& P_{y}(k)=\binom{n}{k}^{k}(1-p)^{n-k} \\
& \begin{array}{l}
=\sum_{s-\rho,}^{s} y(s) \operatorname{Pr}(s)^{p^{k}(1-\rho)^{n-k}} \\
=
\end{array} \\
& E[Y]=\sum_{k \in N} K P_{y}(K)=
\end{aligned}
$$

Binomial Random Variables

```
for \(i=1\) to \(n\) :
    if FlipCoin \((p)==\) HEADS:
        \(X_{i}=1\)
    else:
        \(X_{i}=0\)
```

Notice the following facts:

- $X_{i} \sim \operatorname{Bernoulli}(p)$

All the coin flips are unrelated; so, the X_{i} 's are independent.
Consider the r.v. $Y=\sum_{i=1}^{n} X_{i}$.
When Y is the sum of n Bernoulli distributed r.v.'s, we say $Y \sim \operatorname{Binomial}(n, p)$.

What is $p_{Y}(\cdot)$?

$$
p_{Y}(k)=\operatorname{Pr}(Y=k)=
$$

Binomial Random Variables

```
for \(i=1\) to \(n\) :
    if FlipCoin \((p)==\) HEADS:
        \(X_{i}=1\)
    else:
        \(X_{i}=0\)
```

Notice the following facts:

- $X_{i} \sim \operatorname{Bernoulli}(p)$
- All the coin flips are unrelated; so, the X_{i} 's are independent.

Consider the r.v. $Y=\sum_{i=1}^{n} X_{i}$.
When Y is the sum of n Bernoulli distributed r.v.'s, we say $Y \sim \operatorname{Binomial}(n, p)$.

What is $p_{Y}(\cdot)$?

$$
p_{Y}(k)=\operatorname{Pr}(Y=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

What is $\mathbb{E}[Y]$?

$$
\mathbb{E}[Y]=
$$

Binomial Random Variables

```
for \(i=1\) to \(n\) :
    if FlipCoin \((p)==\) HEADS:
        \(X_{i}=1\)
    else:
        \(X_{i}=0\)
```


$\pm 5 \rightarrow$

Notice the following facts:

- $X_{i} \sim \operatorname{Bernoulli}(p)$
- All the coin flips are unrelated; so, the X_{i} 's are independent.

Consider the r.v. $Y=\sum_{i=1}^{n} X_{i}$.
When Y is the sum of n Bernoulli distributed r.v.'s, we say $Y \sim \operatorname{Binomial}(n, p)$.

What is $p_{Y}(\cdot)$?

$$
p_{Y}(k)=\operatorname{Pr}(Y=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

What is $\mathbb{E}[Y]$?

$$
\mathbb{E}[Y]=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=n p \text { (WTF?) }
$$

Geometric Random Variables

```
1 Z = 0
2 while FlipCoin(p) != HEADS:
3 Z += 1
4 Z += 1
```

When Z is the number of coin flips up to and including the first HEADS, we say $Z \sim \operatorname{Geometric}(p)$.

What is $p_{Y}(\cdot)$?

$$
p_{\boldsymbol{Z}}(k)=\operatorname{Pr}(\check{\mathbf{Z}}=k)=
$$

$$
\begin{aligned}
& P_{z}(k)=(1-p)^{k-1} p \\
& V_{1}(1-\rho)^{k-1} p
\end{aligned}
$$

Geometric Random Variables

```
1 Z = 0
2 while FlipCoin(p) != HEADS:
3 Z += 1
4 Z += 1
```

When Z is the number of coin flips up to and including the first HEADS, we say $Z \sim \operatorname{Geometric}(p)$.

What is $p_{Y}(\cdot)$?

$$
p_{Y}(k)=\operatorname{Pr}(Y=k)=(1-p)^{k-1} p
$$

What is $\mathbb{E}[Y]$?

$$
\mathbb{E}[Y]=
$$

Geometric Random Variables

```
1 Z = 0
2 while FlipCoin(p) != HEADS:
3 Z += 1
4 Z += 1
```

When Z is the number of coin flips up to and including the first HEADS, we say $Z \sim \operatorname{Geometric}(p)$.

What is $p_{Y}(\cdot)$?

$$
p_{Y}(k)=\operatorname{Pr}(Y=k)=(1-p)^{k-1} p
$$

What is $\mathbb{E}[Y]$?

$$
\mathbb{E}[Y]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p=r^{\prime} \sum_{k=1}^{\infty} k(1-p)^{k-1}=\frac{p}{(1-(1-p))^{2}}=\frac{p}{p^{2}}=\frac{1}{p}
$$

Insight: This looks a lot like $\sum_{k=1}^{\infty} k q^{k-1}$ which looks a lot like $\sum_{k=0}^{\infty} q^{k}=\frac{1}{1-x}$.
Take the derivative of both-sides:

$$
\left(\sum_{k=1}^{\infty} k q^{k-1}=\frac{d}{d x}\left(\sum_{k=0}^{\infty} q^{k}\right)=\frac{d}{d t}\left(\frac{1}{1-q}\right)=\frac{1}{(1-q)^{2}}\right.
$$

Sum of Two Dice Rolls

Consider the experiment:

$$
\begin{array}{ll}
1 & A=\operatorname{RollDie}(3) \\
2 & B=R o l l D i e(3) \\
3 & C=A+B
\end{array}
$$

What is $p_{C}(\cdot) ?$

$$
p_{C}(x)=\operatorname{Pr}(C=x)=\{
$$

Sum of Two Dice Rolls

Consider the experiment:

```
1 A = RollDie(3)
2 B = RollDie(3)
3 C = A + B
```

What is $p_{C}(\cdot)$?

$$
p_{C}(x)=\operatorname{Pr}(C=x)= \begin{cases}\frac{1}{9} & \text { if } x=2 \\ \frac{2}{9} & \text { if } x=3 \\ \frac{3}{9} & \text { if } x=4 \\ \frac{2}{9} & \text { if } x=5 \\ \frac{1}{9} & \text { if } x=6 \\ 0 & \text { otherwise }\end{cases}
$$

What is $\mathbb{E}[C]$?

$$
\mathbb{E}[C]=
$$

Sum of Two Dice Rolls

Consider the experiment:

```
1 A = RollDie(3)
2 B = RollDie(3)
3 C = A + B
```

What is $p_{C}(\cdot)$?

$$
p_{C}(x)=\operatorname{Pr}(C=x)= \begin{cases}\frac{1}{9} & \text { if } x=2 \\ \frac{2}{9} & \text { if } x=3 \\ \frac{3}{9} & \text { if } x=4 \\ \frac{2}{9} & \text { if } x=5 \\ \frac{1}{9} & \text { if } x=6 \\ 0 & \text { otherwise }\end{cases}
$$

What is $\mathbb{E}[C]$?

$$
\mathbb{E}[C]=2 \times \frac{1}{9}+3 \times \frac{2}{9}+4 \times \frac{3}{9}+5 \times \frac{2}{9}+6 \times \frac{1}{9}=4
$$

Sum of Two Dice Rolls

What is $p_{C}(\cdot)$?

$$
p_{C}(x)=\operatorname{Pr}(C=x)= \begin{cases}\frac{1}{9} & \text { if } x=2 \\ \frac{2}{9} & \text { if } x=3 \\ \frac{3}{9} & \text { if } x=4 \\ \frac{2}{9} & \text { if } x=5 \\ \frac{1}{9} & \text { if } x=6 \\ 0 & \text { otherwise }\end{cases}
$$

What is $\mathbb{E}[C]$?

$$
\mathbb{E}[C]=2 \times \frac{1}{9}+3 \times \frac{2}{9}+4 \times \frac{3}{9}+5 \times \frac{2}{9}+6 \times \frac{1}{9}=4
$$

What is $\mathbb{E}\left[C^{2}\right]$?
$\mathbb{E}\left[C^{2}\right]=$

Sum of Two Dice Rolls

What is $p_{C}(\cdot)$?

$$
p_{C}(x)=\operatorname{Pr}(C=x)= \begin{cases}\frac{1}{9} & \text { if } x=2 \\ \frac{2}{9} & \text { if } x=3 \\ \frac{3}{9} & \text { if } x=4 \\ \frac{2}{9} & \text { if } x=5 \\ \frac{1}{9} & \text { if } x=6 \\ 0 & \text { otherwise }\end{cases}
$$

What is $\mathbb{E}[C]$?

$$
\mathbb{E}[C]=2 \times \frac{1}{9}+3 \times \frac{2}{9}+4 \times \frac{3}{9}+5 \times \frac{2}{9}+6 \times \frac{1}{9}=4
$$

What is $\mathbb{E}\left[C^{2}\right]$?

$$
\mathbb{E}\left[C^{2}\right]=\sum_{c=2}^{6} c^{2} p_{C}(c)=2^{2} \times \frac{1}{9}+3^{2} \times \frac{2}{9}+4^{2} \times \frac{3}{9}+5^{2} \times \frac{2}{9}+6^{2} \times \frac{1}{9}=\frac{52}{3} \approx 17.33
$$

