Adam Blank Lecture 15 Spring 2018

Foundations of Computing Il

CSE 312: Foundations of Computing 11

Randomized Algorithms

Outline

1 Minimum

B Quick Sort

Minimum Algorithm

// precondition: A is non-empty
def min(A, N):
result = oo
for r =1 to N:
if A[t] < result:
result = A[r]

DOl WN

We've already seen an algorithm like this one on the homework where we
analyzed time to the first execution of line 6.

This time, let's analyze how many times line 6 gets executed.

Worst Case

Minimum Algorithm

// precondition: A is non-empty
def min(A, N):
result = oo
for r =1 to N:
if A[t] < result:
result = A[r]

DOl WN

We've already seen an algorithm like this one on the homework where we
analyzed time to the first execution of line 6.

This time, let's analyze how many times line 6 gets executed.

Worst Case

The worst case is reverse-sorted order which is O(N).

Average Case?

What does this even mean?

Minimum Algorithm

// precondition: A is non-empty
def min(A, N):
result = oo
for t =1 to N:
if A[¢] < result:
result = A[z]

DOl WN

Average Case Assumptions

B Each permutation of the input is equally likely

® No equal entries

Average Case Analysis

Let X be a r.v. for the number of times line 6 is executed.

Minimum Algorithm

1 // precondition: A is non-empty
2 def min(A, N):

3 result = oo

4 fort =1 to N:

5 if A[¢] < result:
6 result = A[z]

Average Case Assumptions

B Each permutation of the input is equally likely
® No equal entries

Average Case Analysis

Let X be a r.v. for the number of times line 6 is executed. Define X; as
an i.r.v. for “whether or not the ith index results in an executation of line
6. Then, note that X = > X;. So, E[X] =) E[X;] =) Pr(X;=1).

Note that X; = 1 exactly when A[:] is the minimum in {A[l
Let T be the set of #-subsets of elements of A.

Minimum Algorithm

// precondition: A is non-empty
def min(A, N):
result = oo
for t =1 to N:
if A[¢] < result:
result = A[z]

DOl WN

Average Case Analysis

Let X be a r.v. for the number of times line 6 is executed. Define X; as
an i.r.v. for “whether or not the ith index results in an executation of line
6. Then, note that X = > X;. So, E[X ZIE 1= Pr(Xi=1).

Note that X; =1 exactly when A[:] is the minimum in {A[1],...,A[]}.
Let T be the set of #-subsets of elements of A. Then:

Minimum Algorithm

1 // precondition: A is non-empty
2 def min(A, N):

3 result = oo

4 fort =1 to N:

5 if A[¢] < result:
6 result = A[z]

Average Case Analysis

Let X be a r.v. for the number of times line 6 is executed. Define X; as
an i.r.v. for “whether or not the ith index results in an executation of line
6. Then, note that X = > X;. So, E[X ZIE 1= Pr(Xi=1).

Note that X; =1 exactly when A[:] is the minimum in {A[1],...,A[]}.
Let T be the set of #-subsets of elements of A. Then:

Pr(X;=1) =) Pr(X, =1|x)Pr(x)

xeT

Minimum Algorithm

1 // precondition: A is non-empty
2 def min(A, N):

3 result = oo

4 fort =1 to N:

5 if A[¢] < result:
6 result = A[z]

Average Case Analysis

Let X be a r.v. for the number of times line 6 is executed. Define X; as
an i.r.v. for “whether or not the ith index results in an executation of line
6. Then, note that X = > X;. So, E[X ZIE 1= Pr(Xi=1).

Note that X; =1 exactly when A[:] is the minimum in {A[1],...,A[]}.
Let T be the set of #-subsets of elements of A. Then:

Pr(X;=1) =) Pr(X, =1|x)Pr(x)

xeT

Z(r—'l)'T

xeT)

:(r—l)!:

t!

Outline

B Minimum

2 Quick Sort

Quick Sort

Quick Sort

: g 14
12
10 6
1 7

Partition based on pivot = 9

Quick Sort

e -
12 8
10 6
1 7

Partition based on pivot = 9

(.

Quick Sort

e -
12 8
10 6
1 7

Partition based on pivot = 9

(.

Recursively Sort Halves

Quick Sort

e -
12 8
10 6 5
1 7

Partition based on pivot = 9

(.

Recursively Sort Halves

[(1T2T3T6]778] (®

L[0] L[1] L[2] L[3] L[4] L[5] R[0] R[1] R[2]

Quick Sort

[20 [50 [70 [10 [60 [40 | 30 |
A[0] A[1) AL2) A[3] Al4] A[5] Al6]
1 Choose Pivot
PN [50 [70 [10 [60 [40 [30 |
A[0] A1) A[2] A3] Al4] A[5] A[6]
41! \
[50 [70 [60 | 40 [30 |
& AL0] ALl AL2] AL3] Al4]

1 Choose Pivot

Bl (70]60]%[3%]

A[0] A[1] A[2] A[3] A[4]

/ \l

A[0] A[1] A[0] A[1]

| Choose Pivot Choose Pivot

AL0] A[1] Af0] A1)

Ve
[60]

AL0] AL0]

Quick Sort

[50 [70 [10 [60 | 40 | 30 |

A[0] Al1] A[2) A[3] A[4] A[5] AL6]

— ~
BN [70[60[40]30]
Ay) Af4]

Af0]] AL1] AL2] AL3]

e ~
%

Al1] AQ] AL1]
a) A\
30 60
A[0] AL0]
[30] 40 | [60] 70]
AL0] All] A[0] Al1]

‘\30\40\50\60\70\

A[0] Al1) Al2] AL3] A[4]

Quick Sort

[50 [70 [10 [60 | 40 | 30 |
A[O]‘ A[] A[2) A[3] AL4] A[5] AL6]

L— ~

@ 70 [60 | 40] 30 |

Al A[3] A[4]
~

A\O] Al1] A[2]

e

AN] ALL AN] Al1]
) 2\

30 60
A[0] A[0]
%0 [40
»I{OJ A1 AL0] ALl

0]40[50[60]70]

0] AL1] AL2] AL3] Al4]

ﬁ,-s/'“

wﬁ

[10] 2030][40 [506070]

AL0] A[1] AL2] AL3] Al4] A[5] AL6]

Quick Sort: Analysis

AT

choose pivot @ ®) recursively sort @ - - <E>
T = ?

L and R sorted sorted

Algorithm
I8 quicksort(A) {
2 if (A.length < 2) { . .
3 return A; Runtime and Analysis
g } B Best Case?
6 pivot = A[RollDie(|A])] m Worst Case?
7 left = quicksort(getLess(A, pivot));
8 right = quicksort(getGreater(A, L Average Case?
pivot));
9 return left + pivot + right;

Quick Sort: Average Case Analysis

[ay

Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

O WWO~NOOOIT A~ WN

Average Case Assumptions
® Each permutation of the input is equally likely
® No equal entries

Average Case Analysis

Let X be a r.v. for the number of comparisons.

Quick Sort: Average Case Analysis

[ay

Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

O WWO~NOOOIT A~ WN

Average Case Assumptions
® Each permutation of the input is equally likely
® No equal entries

Average Case Analysis

Let X be a r.v. for the number of comparisons. Define X; ; as an i.r.v.
for “whether or not the ith element in sorted order gets compared with

n n
the jth element in sorted order. Then, note that X =" > X; ;.
=1 =]

Quick Sort: Average Case Analysis

[y

Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

LW ~NOOOUWNH

Average Case Analysis

n n
Then, note that X =" > X; ;.
=1 =)

Quick Sort: Average Case Analysis

Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

LW ~NOOOUWNH

[y

Average Case Analysis

n n
Then, note that X =) " X;;. So:
i=1 joirl

Consider, X; ; for i < j. (Note that this is the only case we need to
consider because our summation ensures this.)

Quick Sort: Average Case Analysis

[y

Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

O WWO~NOOOTHA WN

Average Case Analysis

Consider X; ; for i< j. Now, a couple of notes:

Quick Sort: Average Case Analysis

Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

O WWO~NOOOTHA WN

[y

Average Case Analysis
Consider X; ; for i< j. Now, a couple of notes:
® We will choose a pivot between A[7] and A[j] on a recursive call.

Quick Sort: Average Case Analysis

Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

O WWO~NOOOTHA WN

[y

Average Case Analysis
Consider X; ; for i< j. Now, a couple of notes:
® We will choose a pivot between A[7] and A[j] on a recursive call.

B [f the choice is strictly between A[i] and A[j], then we will never
compare them.

Quick Sort: Average Case Analysis

Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

O WWO~NOOOTHA WN

[y

Average Case Analysis
Consider X; ; for i< j. Now, a couple of notes:
® We will choose a pivot between A[7] and A[j] on a recursive call.

B [f the choice is strictly between A[i] and A[j], then we will never
compare them.

m |f the choice is equal to A[i] or A[j], then we will always compare
them.

Quick Sort: Average Case Analysis

Average Case Analysis
Consider X; ; for i< j.
m |f the choice is strictly between A[i] and A[j], then we will never
compare them.
® |f the choice is equal to A[i] or A[j], then we will always compare
them.
®m We will choose a pivot between (or at) A[i] and A[j] on some
recursive call.

Let P j, be the event “a pivot between i and j is chosen on the rth
recursive call.

Quick Sort: Average Case Analysis

Average Case Analysis
Consider X; ; for i< j.
m |f the choice is strictly between A[i] and A[j], then we will never
compare them.
® |f the choice is equal to A[i] or A[j], then we will always compare
them.
®m We will choose a pivot between (or at) A[i] and A[j] on some
recursive call.
Let P j, be the event “a pivot between i and j is chosen on the rth
recursive call.

Pr(X,,;=1)= z Pr(x,-, i=11Pjr)Pr(Pijr)

=23

2 e(n)
_l+lzpr(a]r)
2
j-i+l1

Quick Sort: Average Case Analysis

Average Case Analysis

Let P j, be the event “a pivot between i and j is chosen on the rth
recursive call.

Quick Sort: Average Case Analysis

Average Case Analysis

Let P j, be the event “a pivot between i and j is chosen on the rth
recursive call.

	Minimum
	Quick Sort

