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Minimum Algorithm 1

1 // precondition: A is non−empty
2 def min(A, N):
3 result = ∞
4 for t = 1 to N:
5 if A[t] < result:
6 result = A[t]

We’ve already seen an algorithm like this one on the homework where we
analyzed time to the first execution of line 6.

This time, let’s analyze how many times line 6 gets executed.

Worst Case

The worst case is reverse-sorted order which is O(N).

Average Case?
What does this even mean?
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Minimum Algorithm 2

1 // precondition: A is non−empty
2 def min(A, N):
3 result = ∞
4 for t = 1 to N:
5 if A[t] < result:
6 result = A[t]

Average Case Assumptions
Each permutation of the input is equally likely
No equal entries

Average Case Analysis
Let X be a r.v. for the number of times line 6 is executed.

Define Xi as
an i.r.v. for “whether or not the ith index results in an executation of line
6. Then, note that X =∑Xi. So, E[X] =∑E[Xi] =∑Pr(Xi = 1).
Note that Xi = 1 exactly when A[i] is the minimum in {A[1], . . . ,A[i]}.
Let T be the set of t-subsets of elements of A.
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Quick Sort 4
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Quick Sort: Analysis 8

A choose pivot
ÐÐÐÐÐÐ→

L pivot
A[4]

R
recursively sort
ÐÐÐÐÐÐÐÐ→

L and R
L

sorted
+ pivot

A[4]
+ R

sorted

Algorithm
1 quicksort(A) {
2 if (A.length < 2) {
3 return A;
4 }
5
6 pivot = A[RollDie(∣A∣)]
7 left = quicksort(getLess(A, pivot));
8 right = quicksort(getGreater(A,

pivot));
9 return left + pivot + right;

10 }

Runtime and Analysis
Best Case?
Worst Case?
Average Case?



Quick Sort: Average Case Analysis 9

Algorithm
1 quicksort(A) {
2 if (A.length < 2) {
3 return A;
4 }
5
6 pivot = A[RollDie(∣A∣)]
7 left = quicksort(getLess(A, pivot));
8 right = quicksort(getGreater(A, pivot));
9 return left + pivot + right;

10 }

Average Case Assumptions
Each permutation of the input is equally likely
No equal entries

Average Case Analysis
Let X be a r.v. for the number of comparisons.

Define Xi, j as an i.r.v.
for “whether or not the ith element in sorted order gets compared with

the jth element in sorted order. Then, note that X =
n

∑
i=1

n

∑
j=i+1

Xi, j.
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Average Case Analysis

Then, note that X =
n

∑
i=1

n

∑
j=i+1

Xi, j.

So:

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xi, j] =
n

∑
i=1

n

∑
j=i+1

Pr(Xi, j = 1)

Consider, Xi, j for i < j. (Note that this is the only case we need to
consider because our summation ensures this.)
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Quick Sort: Average Case Analysis 11

Algorithm
1 quicksort(A) {
2 if (A.length < 2) {
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4 }
5
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10 }

Average Case Analysis
Consider Xi, j for i < j. Now, a couple of notes:

We will choose a pivot between A[i] and A[ j] on a recursive call.

If the choice is strictly between A[i] and A[ j], then we will never
compare them.

If the choice is equal to A[i] or A[ j], then we will always compare
them.
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Average Case Analysis
Consider Xi, j for i < j.

If the choice is strictly between A[i] and A[ j], then we will never
compare them.
If the choice is equal to A[i] or A[ j], then we will always compare
them.
We will choose a pivot between (or at) A[i] and A[ j] on some
recursive call.

Let Pi, j,r be the event “a pivot between i and j is chosen on the rth
recursive call.

Pr(Xi, j = 1) =∑
r

Pr(Xi, j = 1 ∣ Pi, j,r)Pr(Pi, j,r)

=∑
r

2
j− i+1

Pr(Pi, j,r)

=
2

j− i+1
∑

r
Pr(Pi, j,r)

=
2

j− i+1
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Average Case Analysis
Let Pi, j,r be the event “a pivot between i and j is chosen on the rth
recursive call.

Pr(Xi, j = 1) =
2

j− i+1

E[X] =
n

∑
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n

∑
j=i+1

Pr(Xi, j = 1)

=
n

∑
i=1

n

∑
j=i+1

2
j− i+1

=
n

∑
i=1

2(
1
2
+

1
3
+⋯+

1
n− i+1

)

=
n

∑
i=1

2(Hn−1)

< 2n(Hn−1)
≤ 2n ln(n)
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