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Minimum Algorithm

// precondition: A is non-empty
def min(A, N):
result = oo
for r =1 to N:
if A[t] < result:
result = A[r]

DOl WN

We've already seen an algorithm like this one on the homework where we
analyzed time to the first execution of line 6.

This time, let's analyze how many times line 6 gets executed.

Worst Case
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We've already seen an algorithm like this one on the homework where we
analyzed time to the first execution of line 6.

This time, let's analyze how many times line 6 gets executed.

Worst Case

The worst case is reverse-sorted order which is O(N).

Average Case?

What does this even mean?



Minimum Algorithm

// precondition: A is non-empty
def min(A, N):
result = oo
for t =1 to N:
if A[¢] < result:
result = A[z]

DOl WN

Average Case Assumptions

B Each permutation of the input is equally likely

® No equal entries

Average Case Analysis

Let X be a r.v. for the number of times line 6 is executed.



Minimum Algorithm

1 // precondition: A is non-empty
2 def min(A, N):

3 result = oo

4 fort =1 to N:

5 if A[¢] < result:
6 result = A[z]

Average Case Assumptions

B Each permutation of the input is equally likely
® No equal entries

Average Case Analysis

Let X be a r.v. for the number of times line 6 is executed. Define X; as
an i.r.v. for “whether or not the ith index results in an executation of line
6. Then, note that X = > X;. So, E[X] =) E[X;] =) Pr(X;=1).

Note that X; = 1 exactly when A[:] is the minimum in {A[l
Let T be the set of #-subsets of elements of A.
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Recursively Sort Halves
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Quick Sort
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Quick Sort
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Quick Sort: Analysis

AT

choose pivot @ ®) recursively sort @ - - <E>
T = ?

L and R sorted sorted

Algorithm
I8 quicksort(A) {
2 if (A.length < 2) { . .
3 return A; Runtime and Analysis
g } B Best Case?
6 pivot = A[RollDie(|A])] m Worst Case?
7 left = quicksort(getLess(A, pivot));
8 right = quicksort(getGreater(A, L Average Case?
pivot));
9 return left + pivot + right;




Quick Sort: Average Case Analysis

[ay

Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

O WWO~NOOOIT A~ WN

Average Case Assumptions
® Each permutation of the input is equally likely
® No equal entries

Average Case Analysis

Let X be a r.v. for the number of comparisons.
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Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;
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Average Case Assumptions
® Each permutation of the input is equally likely
® No equal entries

Average Case Analysis

Let X be a r.v. for the number of comparisons. Define X; ; as an i.r.v.
for “whether or not the ith element in sorted order gets compared with

n n
the jth element in sorted order. Then, note that X =" > X; ;.
=1 =]




Quick Sort: Average Case Analysis
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Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}
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Algorithm

quicksort(A) {
if (A.length < 2) {
return A;

}

pivot = A[RollDie(|A])]

left = quicksort(getLess(A, pivot));
right = quicksort(getGreater(A, pivot));
return left + pivot + right;

LW ~NOOOUWNH
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Average Case Analysis

n n
Then, note that X =) " X;;. So:
i=1 joirl

Consider, X; ; for i < j. (Note that this is the only case we need to
consider because our summation ensures this.)
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Average Case Analysis

Consider X; ; for i< j. Now, a couple of notes:
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Average Case Analysis
Consider X; ; for i< j. Now, a couple of notes:
® We will choose a pivot between A[7] and A[j] on a recursive call.
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Average Case Analysis
Consider X; ; for i< j. Now, a couple of notes:
® We will choose a pivot between A[7] and A[j] on a recursive call.

B [f the choice is strictly between A[i] and A[j], then we will never
compare them.
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quicksort(A) {
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Average Case Analysis
Consider X; ; for i< j. Now, a couple of notes:
® We will choose a pivot between A[7] and A[j] on a recursive call.

B [f the choice is strictly between A[i] and A[j], then we will never
compare them.

m |f the choice is equal to A[i] or A[j], then we will always compare
them.




Quick Sort: Average Case Analysis

Average Case Analysis
Consider X; ; for i< j.
m |f the choice is strictly between A[i] and A[j], then we will never
compare them.
® |f the choice is equal to A[i] or A[j], then we will always compare
them.
®m We will choose a pivot between (or at) A[i] and A[j] on some
recursive call.

Let P j, be the event “a pivot between i and j is chosen on the rth
recursive call.




Quick Sort: Average Case Analysis

Average Case Analysis
Consider X; ; for i< j.
m |f the choice is strictly between A[i] and A[j], then we will never
compare them.
® |f the choice is equal to A[i] or A[j], then we will always compare
them.
®m We will choose a pivot between (or at) A[i] and A[j] on some
recursive call.
Let P j, be the event “a pivot between i and j is chosen on the rth
recursive call.

Pr(X,,;=1)= z Pr(x,-, i=11Pjr)Pr(Pijr)

=23

2 e(n)
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Average Case Analysis

Let P j, be the event “a pivot between i and j is chosen on the rth
recursive call.
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