

Foundations of Computing II

CSE 312: Foundations of Computing II

Poisson Distribution

Uniform Random Variables

$1 \mathrm{U}=(\mathrm{a}-1)+\operatorname{RollDie}(\mathrm{b}-\mathrm{a}+1)$

What is $p_{U}(\cdot) ?$

$$
p_{U}(k)=\operatorname{Pr}(U=k)=
$$

What is $\mathbb{E}[U]$?

$$
\mathbb{E}[U]=
$$

What is $\operatorname{Var}(U)$?

$$
\operatorname{Var}(U)=\frac{(b-a)(b-a+2)}{12}
$$

Uniform Random Variables

$1 \mathrm{U}=(\mathrm{a}-1)+\operatorname{RollDie}(\mathrm{b}-\mathrm{a}+1)$

What is $p_{U}(\cdot) ?$

$$
p_{U}(k)=\operatorname{Pr}(U=k)=\frac{1}{b-a+1}
$$

What is $\mathbb{E}[U]$?

$$
\mathbb{E}[U]=\sum_{k=a}^{b} \frac{k}{b-a+1}=\frac{1}{2}(a+b)
$$

What is $\operatorname{Var}(U)$?

$$
\operatorname{Var}(U)=\frac{(b-a)(b-a+2)}{12}
$$

Poisson Distribution

Define a potential distribution with pmf:

$$
p_{P}(k)=\operatorname{Pr}(P=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Is this a valid distribution?

$$
\sum_{k=0}^{\infty} p_{P}(k)=
$$

What is $\mathbb{E}[P]$?
$\mathbb{E}[P]=\sum_{k=0}^{\infty} k p_{P}(k)=$
What is $\operatorname{Var}(P)$?

$$
\mathbb{E}\left[P^{2}\right]=\sum_{k=0}^{\infty} k^{2} p_{P}(k)=\lambda^{2}+\lambda \quad \operatorname{Var}(P)=
$$

Poisson Distribution

Define a potential distribution with pmf:

$$
p_{P}(k)=\operatorname{Pr}(P=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Is this a valid distribution?

$$
\sum_{k=0}^{\infty} p_{P}(k)=\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0} \frac{\lambda^{k}}{k!}=e^{-\lambda} e^{\lambda}=1
$$

What is $\mathbb{E}[P]$?

$$
\mathbb{E}[P]=\sum_{k=0}^{\infty} k p_{P}(k)=\sum_{k=1}^{\infty} e^{-\lambda} \frac{k \lambda^{k}}{k!}=e^{-\lambda} \lambda \sum_{k=1} \frac{\lambda^{k-1}}{(k-1)!}=e^{-\lambda} \lambda e^{\lambda}=\lambda
$$

What is $\operatorname{Var}(P)$?
$\mathbb{E}\left[P^{2}\right]=\sum_{k=0}^{\infty} k^{2} p_{P}(k)=\lambda^{2}+\lambda$

$$
\operatorname{Var}(P)=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

$$
p_{P}(k)=\operatorname{Pr}(P=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Okay. . . so where did this come from?

$$
p_{P}(k)=\operatorname{Pr}(P=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Okay. . . so where did this come from?
Suppose n potential occurrences of an event happen over a given period of time at an average rate of λ. Let X be the number of actual occurrences of the event.

Note that $X \sim \operatorname{Binomial}\left(n, \frac{\lambda}{n}\right)$.
In this example, only a fixed number of events can occur in our time period. Can we model what would happen if an arbitrary number of events could occur in a single period of time?

Define Y to be a r.v. with pmf: $p_{Y}(k)=\lim _{n \rightarrow \infty} p_{X}(k)$. That is, to represent a single time step with an arbitrarily large number of events, we take $n \rightarrow \infty$.

Define Y to be a r.v. with pmf: $p_{Y}(k)=\lim _{n \rightarrow \infty} p_{X}(k)$. That is, to represent a single time step with an arbitrarily large number of events, we take $n \rightarrow \infty$.

Define Y to be a r.v. with pmf: $p_{Y}(k)=\lim _{n \rightarrow \infty} p_{X}(k)$. That is, to represent a single time step with an arbitrarily large number of events, we take $n \rightarrow \infty$.

$$
\begin{aligned}
\operatorname{Pr}(Y=k) & =\lim _{n \rightarrow \infty} \operatorname{Pr}(X=k) \\
& =\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty} \frac{n!}{(n-k)!}\left(\frac{1}{n^{k}}\right)\left(1+\frac{-\lambda}{n}\right)^{n-k} \\
& =\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty} \frac{n(n-1) \cdots(n-k+1)}{n^{k}}\left(1+\frac{-\lambda}{n}\right)^{n-k} \\
& =\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty}\left(1+\frac{-\lambda}{n}\right)^{n-k} \\
& =\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty}\left(1+\frac{-\lambda}{n}\right)^{n} \\
& =e^{-\lambda} \frac{\lambda^{k}}{k!}
\end{aligned}
$$

More E-mail

$$
p_{P}(k)=\operatorname{Pr}(P=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

You get email at a rate of $\lambda=0.2$ messages per hour.

Example

You check your e-mail every hour. What is the probability of finding 0 new messages? What about 1 message?

More E-mail

$$
p_{P}(k)=\operatorname{Pr}(P=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

You get email at a rate of $\lambda=0.2$ messages per hour.

Example

You check your e-mail every hour. What is the probability of finding 0 new messages? What about 1 message? Let X be the r.v. for the number of messages you get in an hour. Note that $X \sim$ Poisson (0.2)). Then, we're asking for $p_{X}(0)$ and $p_{X}(1)$ which are the following:

- $p_{X}(0)=e^{-0.2} \approx 0.819$
- $p_{X}(1)=e^{-0.2}(0.2) \approx 0.164$

Example

You don't check your e-mail for a whole day. What is the probability of finding 0 new messages?

More E-mail

$$
p_{P}(k)=\operatorname{Pr}(P=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

You get email at a rate of $\lambda=0.2$ messages per hour.

Example

You check your e-mail every hour. What is the probability of finding 0 new messages? What about 1 message? Let X be the r.v. for the number of messages you get in an hour. Note that $X \sim$ Poisson (0.2)). Then, we're asking for $p_{X}(0)$ and $p_{X}(1)$ which are the following:

- $p_{X}(0)=e^{-0.2} \approx 0.819$
- $p_{X}(1)=e^{-0.2}(0.2) \approx 0.164$

Example

You don't check your e-mail for a whole day. What is the probability of finding 0 new messages? Let X be the r.v. for the number of messages you got in a single hour. Then, $X \sim$ Poisson (0.2)). Note that we're looking for $\left(p_{X}(0)\right)^{24}=\left(e^{-0.2}\right)^{24} \approx 0.00823$

Server

Suppose a server can process k requests per second. Requests arrive at random at an average rate of $\lambda=1$ per second. What size does k need to be to guarantee a less than 50% chance that we drop a packet?

Server

Suppose a server can process k requests per second. Requests arrive at random at an average rate of $\lambda=1$ per second. What size does k need to be to guarantee a less than 50% chance that we drop a packet?

