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Uniform Random Variables

1 U=(a-1) + (b —a+ 1)

What is py(-)?

pu (k) =Pr(U =k) =

What is E[U]?

What is Var(U)?
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Poisson Distribution
Define a potential distribution with pmf:

Y

pp(k) =Pr(P=k)=e¢

k!
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What is Var(P)?
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Binomial and Poisson Distribution

k

pr(k)=Pr(P=K) = 7

Okay. . . so where did this come from?



Binomial and Poisson Distribution

k

pr(k) =Pr(P=K) = 7

Okay. . . so where did this come from?

Suppose n potential occurrences of an event happen over a given period
of time at an average rate of A. Let X be the number of actual
occurrences of the event.

Note that X ~ Binomial (n7 &)
n

In this example, only a fixed number of events can occur in our time
period. Can we model what would happen if an arbitrary number of
events could occur in a single period of time?

Define Y to be a r.v. with pmf: py(k) = lim px (k). That is, to represent

a single time step with an arbitrarily large number of events, we take
n— oo,
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More E-mail

k
pp(k) =Pr(P=k) = e_’l%

You get email at a rate of A =0.2 messages per hour.

Example

You check your e-mail every hour. What is the probability of finding 0
new messages? What about 1 message?
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pp(k) =Pr(P=k) = e_’l%

You get email at a rate of A =0.2 messages per hour.

Example

You check your e-mail every hour. What is the probability of finding 0
new messages? What about 1 message? Let X be the r.v. for the
number of messages you get in an hour. Note that X ~ Poisson (0.2)).

Then, we're asking for px(0) and px (1) which are the following:
® px(0)=e"2~0.819
m px(1)=e72(0.2) ~0.164

Example

You don't check your e-mail for a whole day. What is the probability of
finding 0 new messages?
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You get email at a rate of A =0.2 messages per hour.

Example

You check your e-mail every hour. What is the probability of finding 0
new messages? What about 1 message? Let X be the r.v. for the
number of messages you get in an hour. Note that X ~ Poisson (0.2)).

Then, we're asking for px(0) and px (1) which are the following:
® px(0)=e"2~0.819
m px(1)=e72(0.2) ~0.164

Example

You don't check your e-mail for a whole day. What is the probability of
finding 0 new messages? Let X be the r.v. for the number of messages

you got in a single hour. Then, X ~ Poisson (0.2)). Note that we're
; o\ 24
looking for (px (0))** = (¢7°2)* ~0.00823




Server

Suppose a server can process k requests per second. Requests arrive at
random at an average rate of A =1 per second. What size does k need to
be to guarantee a less than 50% chance that we drop a packet?
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