

Foundations of Computing II

CSE 312: Foundations of Computing II

$$
\frac{C D F}{\operatorname{Pr}(x \leq k)}=\int_{-\infty}^{k} f_{x}(x) d x
$$

More Continuous Distributions

Our Favorite Distributions

$\operatorname{Binomial}(n, p)$
The number of times an event occurs from n possible occurences, each event with probability p.

Poisson (λ)
The number of times an event occurs in "a single time period" at rate λ.

Geometric
The number of attempts before an event occurs, each event with probability p.
?????
The amount of time before an event occurs, each event at rate λ.

Define the distribution by $\operatorname{Pr}(X>t)=e^{-\lambda t}$. What is the CDF? The PDF? CDF

$$
\begin{gathered}
F_{x}(x)= \\
F_{x}(t)=\operatorname{Pr}(x \leq t)=1-\operatorname{Pr}(x>t) \\
=1-e \lambda t \\
F_{x}(t)=\int_{-\infty}^{t} f_{x}(x) d x \\
f_{x}(t)=\int_{\sqrt{t}}^{\infty}\left(F_{x}(t)\right)=\lambda e^{-\lambda t}
\end{gathered}
$$

Exponential Distribution

Define the distribution by $\operatorname{Pr}(X>t)=e^{-\lambda t}$. What is the CDF? The PDF?
CDF

$$
F_{X}(x)=\operatorname{Pr}(X \leq t)=1-\operatorname{Pr}(X>t)=1-e^{-\lambda t}
$$

PDF

Recall, $f_{X}(x)=\frac{d}{d x} F_{X}(x)$. So,

$$
f_{X}(x)=
$$

Exponential Distribution

Define the distribution by $\operatorname{Pr}(X>t)=e^{-\lambda t}$. What is the CDF? The PDF?
CDF

$$
F_{X}(x)=\operatorname{Pr}(X \leq t)=1-\operatorname{Pr}(X>t)=1-e^{-\lambda t}
$$

PDF

Recall, $f_{X}(x)=\frac{d}{d x} F_{X}(x)$. So,

$$
f_{X}(x)=\frac{d}{d x}\left(1-e^{-\lambda t}\right)=\lambda e^{-\lambda t}
$$

Exponential(2) PDF

Expectation of Exponential

$$
\begin{aligned}
& \mathbb{E}[x]=\int_{0}^{\infty} f_{x}(x) d x \quad f_{x}(t)=\lambda e^{-\lambda \lambda t} \\
&=\lambda \int_{0}^{\infty} x e^{-\lambda x} d x \\
& u=x \quad d v \\
& d u=d x \quad v
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[X] & =\underbrace{\int_{-\infty}^{\infty} x \lambda e^{-\lambda x} d x} d x \\
& =\lambda \int_{0}^{\infty} x e^{-\lambda x} d d x \\
d u & =d x \quad v=\int e^{-\lambda x} d x \\
& =\lambda\left(\left.u v\right|_{0} ^{\infty}-\int_{0}^{\infty} v d u\right) \\
& =-\left.x e^{-\lambda x}\right|_{0} ^{\infty}-\lambda \int_{0}^{\infty}-\left.\frac{1}{\lambda} e^{-\lambda x}\right|_{0} ^{\infty} d x \\
& =-\left.x e^{-\lambda x}\right|_{0} ^{\infty}-\left.\frac{1}{\lambda} e^{-\lambda x}\right|_{0} ^{\infty} \\
& =\left.\left(-x e^{-\lambda x}-\frac{1}{\lambda} e^{-\lambda x}\right)\right|_{0} ^{\infty} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \lambda e^{-\lambda x} \\
&=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \\
& \begin{array}{rl}
u=x^{2} & \quad d v=e^{-\lambda x} d x \\
d u=2 x & d x \quad v=\int e^{-\lambda x} d x=-\frac{1}{\lambda} e^{-\lambda x} \\
& =\lambda\left(\left.u v\right|_{0} ^{\infty}-\int_{0}^{\infty} v d u\right) \\
& =-\left.x^{2} e^{-\lambda x}\right|_{0} ^{\infty}+\frac{2}{\lambda} \int_{0}^{\infty} x e^{-t \lambda x} \\
& =-\left.x^{2} e^{-\lambda x}\right|_{0} ^{\infty}+2 \frac{\mathbb{E}[X]}{\lambda \infty} \\
& =-\left.x^{2} e^{-\lambda x}\right|_{0} ^{\infty}+\frac{2}{\lambda^{2}} \\
& =\frac{2}{\lambda^{2}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}[X]=\frac{1}{\lambda} \\
& \mathbb{E}\left[X^{2}\right]=\frac{2}{\lambda^{2}} \\
& \operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\frac{1}{\lambda^{2}}
\end{aligned}
$$

Memorylessness

Definition (Memorylessness)

If $\operatorname{Pr}(X>s+t \mid X>s)=\operatorname{Pr}(X>t)$, we say X is "memoryless". In English, if you've waited s units of time, the probability that you wait t more units of time is exactly the same as if you'd just shown up.

The Geometric Distribution is Memoryless
What is the CDF of the geometric distribution? If $G \sim \operatorname{Geometric}(p)$, then $\operatorname{Pr}(G>k)=$

$$
\left.\operatorname{Pr}(G>x)=P \sum_{k=1}^{1}(1-p)^{2} P=1-\operatorname{Pr}(G \leq h)=(1-r)\right)^{\prime}
$$

$$
\begin{aligned}
\operatorname{Pr}(x>s+t \mid x>s)=\frac{\operatorname{pr}(x>s+t) x>s)}{\operatorname{Pr}(x>s)} & =\left(\frac{(1-p)^{s+x}}{(1-p)^{s}}\right. \\
& \left.=(1-p)^{t}\right)
\end{aligned}
$$

Memorylessness

Definition (Memorylessness)

If $\operatorname{Pr}(X>s+t \mid X>s)=\operatorname{Pr}(X>t)$, we say X is "memoryless". In English, if you've waited s units of time, the probability that you wait t more units of time is exactly the same as if you'd just shown up.

The Geometric Distribution is Memoryless
What is the CDF of the geometric distribution? If $G \sim \operatorname{Geometric}(p)$, then $\operatorname{Pr}(G>k)=(1-p)^{k}$.
So, $\operatorname{Pr}(G>s+t \mid G>s)=\frac{\operatorname{Pr}(G>s+t \cap G>s)}{\operatorname{Pr}(G>s)}=\frac{\operatorname{Pr}(G>s+t)}{\operatorname{Pr}(G>s)}=\frac{(1-p)^{s+t}}{(1-p)^{s}}=(1-p)^{t}=$ $\operatorname{Pr}(G>t)$.

The Exponential Distribution is Memoryless
If $E \sim$ Exponential (λ), then $\operatorname{Pr}(E>x)=e^{-\lambda x}$.

Memorylessness

Definition (Memorylessness)

If $\operatorname{Pr}(X>s+t \mid X>s)=\operatorname{Pr}(X>t)$, we say X is "memoryless". In English, if you've waited s units of time, the probability that you wait t more units of time is exactly the same as if you'd just shown up.

The Geometric Distribution is Memoryless
What is the CDF of the geometric distribution? If $G \sim \operatorname{Geometric}(p)$, then $\operatorname{Pr}(G>k)=(1-p)^{k}$.
So, $\operatorname{Pr}(G>s+t \mid G>s)=\frac{\operatorname{Pr}(G>s+t \cap G>s)}{\operatorname{Pr}(G>s)}=\frac{\operatorname{Pr}(G>s+t)}{\operatorname{Pr}(G>s)}=\frac{(1-p)^{s+t}}{(1-p)^{s}}=(1-p)^{t}=$ $\operatorname{Pr}(G>t)$.

The Exponential Distribution is Memoryless
If $E \sim$ Exponential (λ), then $\operatorname{Pr}(E>x)=e^{-\lambda x}$.
So,
$\operatorname{Pr}(E>s+t \mid E>s)=\frac{\operatorname{Pr}(E>s+t \cap E>s)}{\operatorname{Pr}(E>s)}=\frac{\operatorname{Pr}(E>s+t)}{\operatorname{Pr}(E>s)}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=\operatorname{Pr}(E>t)$.

For each of the following r.v.'s, which distribution best fits the description?

- time until the next packet arrival at a server
number of packet arrivals at a server in a minute
number of packet arrivals at a server in an hour
number of words until the next typo in a textbook
- time until a defective product is found if 1 product is inspected per second

