

Foundations of Computing II

CSE 312: Foundations of Computing II
Hello II
CLT Problems
HWI - HWS Redos due mondry
Hw 6 I week after Feodlack
Hw 7-Hw8 wo redos,
buat Partial creasit

We flip a fair coin 40 times. What is the probability that we get between 21 and 25 HEADS (inclusive)?

Binomial

$$
\begin{aligned}
& \bar{U}_{x}^{2}=n p(1-p) \\
& \mu_{x}=n p=20 \\
& \text { es. }
\end{aligned}
$$

We flip a coin with biers. What is the probability that we Bet exactly 20 Heads? $X \sim B_{\text {nominal }}^{\prime}\left(40, \frac{1}{3}\right)$

This approximation sucks. To do better, we can abuse the same trick we did when we wrote the code last lecture.

In particular, we can "round" non-integers to integers by treating $[a, \ldots, b]$ as approximately equal to $\left[a-\frac{1}{2}, b+\frac{1}{2}\right]$.

Binomial

We flip a coin with bias $1 / 340$ times. What is the probability that we get exactly 20 HEADS?
Bins: $\frac{5}{3}$
exactly 2∂
exact: 0.018

Bias: $\frac{1}{2}$ between 21 ant 25 (incursive)

$$
\begin{aligned}
& \operatorname{Pr}(20.5 \leq x \leq 25.5)= \\
& \Phi(-x) \approx 1-\Phi(x)
\end{aligned}
$$

Roll 10 6-sided dice. Let $X=$ total value of all 10 dice. Win if $X \leq 25$ or

$$
\begin{aligned}
\operatorname{Pr}(\text { win }) & =1-\operatorname{Pr}\left(25<x(45) \mu_{\text {misomm }}=\frac{a+b}{2}\right. \\
& -1-\operatorname{Pr}(25.5 \leq x \leq 44.5)
\end{aligned}
$$

μ_{x}

$$
\sigma_{x}^{2}=\operatorname{Var}(x)=
$$

Each day your computer crashes with probability 10% independently of every other day. What is the probability of at least 87 crash-free days in the next 100 days?

$$
\begin{aligned}
& X \sim \operatorname{Binomial}(100,0.9) \\
& M_{x}=n p=90 \\
& \pi_{x}^{2}=n p(1-p)=9 \\
& \operatorname{Pr}\left(\begin{array}{c}
87<x<100
\end{array}\right)
\end{aligned}
$$

