Lecture 21

Foundations of Computing II

CSE 312: Foundations of Computing II

Law of Large Numbers & Central Limit Theorem

Chernoff Bound

Suppose $X \sim \text{Binomial}(n, p)$. Then, $\mu = \mathbb{E}[X] = np$.

Definition (Chernoff Bound)

For any $0 < \delta < 1$:

$$\Pr(X > (1+\delta)\mu) \le e^{-\frac{\delta^2\mu}{3}}$$
$$\Pr(X < (1-\delta)\mu) \le e^{-\frac{\delta^2\mu}{2}}$$

Law of Large Numbers

Consider i.i.d. r.v.'s. Suppose X_i has $\mu = \mathbb{E}[X_i] < \infty$ and $\sigma^2 = Var(X_i) < \infty$.

Law of Large Numbers

Consider i.i.d. r.v.'s. Suppose X_i has $\mu = \mathbb{E}[X_i] < \infty$ and $\sigma^2 = Var(X_i) < \infty$. Then: $\mathbb{E}\left[\frac{X_1 + \dots + X_n}{n}\right] = \mu$ and $Var\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{\sigma^2}{n}$ Weak Law of Large Numbers: For any $\varepsilon > 0$, as $n \to \infty$,

$$\Pr\left(\left|\frac{X_1+\cdots+X_n}{n}-\mu\right|>\varepsilon\right)\to 0$$

Strong Law of Large Numbers:

$$\Pr\left(\lim_{n\to\infty}\left(\frac{X_1+\cdots+X_n}{n}\right)=\mu\right)=1$$

Central Limit Theorem

Consider i.i.d. r.v.'s X_1, X_2, \ldots, X_n with $\mathbb{E}[X_i] < \infty$ and $Var(X_i) < \infty$. Then, as $n \to \infty$:

Central Limit Theorem

Consider i.i.d. r.v.'s X_1, X_2, \ldots, X_n with $\mathbb{E}[X_i] < \infty$ and $Var(X_i) < \infty$. Then, as $n \to \infty$:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\to\mathcal{N}\left(\mu,\frac{\sigma^{2}}{n}\right)$$