
Adam Blank Spring 2018Lecture 1

CSE312
Foundations of Computing II

CSE 312: Foundations of Computing II

Welcome to CSE 312!

Outline

1 Administrivia

2 Motivation

3 Combinatorial Toolbox
Rule of Product
Rule of Sum
Counting by Complement

4 Combinatorial Primitives
n!(nk )

5 Problems

What Am I Getting Into? 1

Course Material
“Classic” Combinatorics, Discrete Probability, Continuous
Probability, Statistics
Computer Science applications and analyses
. . .

CSE 311 vs. CSE 312
Logic vs. Reasoning Under Uncertainty
Proofs vs. Arguments

Course Goals 2

During the course, we will. . .
Extend the type of thinking learned in 311 to new situations
Discover why combinatorial reasoning is useful to computer science
Discover why probabilistic reasoning is useful to computer science

After the course, you will be able to. . .
Arm yourself in today’s uncertain and biased world
Rigorously analyze probabilistic algorithms

Support and Asking for Help 3

Resources
Section every week!
Lots of office hours!
Piazza!

Asking for help is not a sign of weakness; it’s a sign of strength.



Boring Administrivia 4

Course Website
http://cs.uw.edu/312

Grading
50% homework, 20% midterm, 20% final

Textbook
Bertsekas and Tsitsiklis. Introduction to Probability.

My Philosophy 5

Do what helps you most.

. . . but active learning has been proven to result in better performance.

Why Bother? 6

Why bother studying combinatorics and probability?
It’s more math. . . we’re still computer scientists. . .

Algorithms 7

Baseball Tournaments
Imagine you’re designing a tournament for n little-league baseball teams.
There are several different ways that they could play each other:

Each team plays every other team once. (Round Robin)
Each team plays until they lose. (Single Elimination)
Each team plays until they lose twice. (Double Elimination)

You have been tasked with figuring out which type of tournament is best
for the children to play in. Since each game costs your boss money, he
would like them to play a minimal number of games. Which type of
tournament should you recommend?

Bioinformatics 8

DNA Sequencing
Imagine you’re working in bioinformatics, and you’ve been asked to
identify if a strand of DNA could have replicated from from a set of other
strands of DNA. Recall that DNA strands are just strings of {A,C,T,G}.
Your first thought is to write a program to brute force all the possibilities.
Is this a reasonable approach?

Counting Cards 9

Poker
You’re playing a game of poker and you have a pair of 10’s and a pair of
queens.

How likely are you to win?



It’s about the process 10

As a Computer Scientist, you will often write algorithms. You’ll also need
to reason about:

1 Enumeration. How many solutions are there to a problem?
Can we solve Sudoku boards by solving all of them and looking them
up in a database?

2 Existence. Is it even possible to find a solution?
Can we draw maps of countries so that no two adjacent ones have
the same color with just four colors?

3 Construction. Is it possible to transmit data over a faulty
connection?
How do computers read CDs that have some scratches on them?

4 Optimization. What is the best solution to a problem? Why can’t
we do better?
How does a GPS know the best route between any two locations?

It’s about the process 11

To solve each of these questions, you have to reason about how many of
something there are. This process is “thinking combinatorially”, and
we’re going to talk about it for the next two weeks!

Thinking combinatorially can sometimes make very difficult problems
much easier.

Combinatorial Toolbox 12

How should you approach a combinatorial problem?
Let’s build up a “toolbox” of approaches we can take!

This may seem a little strange, but our three most powerful tools in
counting are laws of sets!

Rule of Product 13

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣
What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
Let D6 be the set of outcomes for rolling a die.
The outcomes of rolling two six-sided dice are members of D6×D6.
We know ∣D6∣ = ∣{1,2,3,4,5,6}∣ = 6, and ∣D6×D6∣ = ∣D6∣× ∣D6∣ by the Rule
of Product.
So, the number of outcomes is 6×6 = 36.

UGH! Do we have to write that every time?

Rule of Product 14

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣
What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
We know that there are six ways to roll a single die. To roll two dice, we
follow this procedure:

Roll one die.
Roll one die.

Each step of the procedure has six possibilities; so, multiplying them
together by the Rule of Product, we get 6×6 = 36 outcomes.

Rule of Sum 15

Definition (Disjoint Sets)
X1,X2, . . . ,Xn are pairwise disjoint sets iff

∀(i ≠ j). Xi∩X j =∅
Definition (Rule of Sum)
If X1,X2, . . .Xn are pairwise disjoint sets, then

∣X1∪X2∪⋯∪Xn∣ = ∣X1∣+ ∣X2∣+⋅ ⋅ ⋅+ ∣Xn∣
Example
How many ways can I roll two six-sided dice to get a sum of 4?



Rule of Sum 16

Definition (Rule of Sum)
If X1,X2, . . .Xn are pairwise disjoint sets, then

∣X1∪X2∪⋯∪Xn∣ = ∣X1∣+ ∣X2∣+⋅ ⋅ ⋅+ ∣Xn∣
Example
How many ways can I roll two six-sided dice to get a sum of 4?

Proof.
Note that the first roll could be 1 through 6. We partition on these cases:

If the first roll is a 1, then the second roll must be 3.
If the first roll is a 2, then the second roll must be 2.
If the first roll is a 3, then the second roll must be 1.
If the first roll is 4, 5, or 6, then we can never sum to 4.

Note that these cases are mutually exclusive. Furthermore, this covers all
the possible cases for the first die. Putting these together, we see that
1+1+1+0+0+0 = 3 is our answer by the Rule of Sum.

Counting by Complement 17

Sometimes, instead of counting the things we want, we count the things
we don’t want and remove them.
Definition (Counting by Complement)
If U is the universal set, then

A = U ∖A

Example
How many binary strings of length n are there that have at least one 1.

Proof.
First, we show that there are 2n binary strings.To generate a binary
string, we use an n-step process:

Choose the 1st bit.
Choose the 2nd bit.
. . .

Choose the nth bit.

Counting by Complement 18

Example
How many binary strings of length n are there that have at least one 1.

Proof.
First, we show that there are 2n binary strings. To generate a binary
string, we use an n-step process:

Choose the 1st bit.
Choose the 2nd bit.
. . .

Choose the nth bit.
Since each step of this procedure has 2 options, the total number of
binary strings of length n is 2×2×⋅ ⋅ ⋅×2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

= 2n by the Rule of Product.

Now, we count how many binary strings of length n have no 1’s. We use
the same procedure as before, except, now, we only have 1 choice at each
step. It follows that there is 1 bad binary string.
So, Counting by Complement, we see that there are 2n−1 binary strings
with at least one 1.

Combinatorial Primitives 19

Now that we know what we’re trying to do, let’s build up the primitives
of our language.

Think of these like if statements and for loops in programming.

We can use these to build up larger, more complicated counting
arguments!

Factorials 20

Primitive: Arranging {x1,x2, . . . ,xn}
We would like to arrange n distinct things, {x1,x2, . . . ,xn}, in a row:

⋯
How many places could we put x1? n

Factorials 21

Primitive: Arranging {x1,x2, . . . ,xn}
We would like to arrange n distinct things, {x1,x2, . . . ,xn}, in a row:

⋯ x1

How many places could we put x1? n
How many places could we put x2? n−1



Factorials 22

Primitive: Arranging {x1,x2, . . . ,xn}
We would like to arrange n distinct things, {x1,x2, . . . ,xn}, in a row:

x2 x3 ⋯ x1

How many places could we put x1? n
How many places could we put x2? n−1

. . .
How many places could we put xk? n−(k−1)

Factorials 23

Primitive: Arranging {x1,x2, . . . ,xn}
We would like to arrange n distinct things, {x1,x2, . . . ,xn}, in a row:

xn−1 x2 x3 ⋯ x1 xk

How many places could we put x1? n
How many places could we put x2? n−1

. . .
How many places could we put xk? n−(k−1)

. . .
How many places could we put xn? 1

Proof.
We can arrange {x1,x2, . . . ,xn} in an n-step process, where, on step k, we
place xk. There are n−(k−1) ways to do step k, since there are that
many spots remaining. It follows that the number of ways to arrange our
set is n(n−1)⋯2(1) = n! by Rule of Product.

Combinations 24

Primitive: Choosing a subset of k elements of {x1,x2, . . . ,xn}
(n

k
)

For now, we don’t care how to calculate this explicitly. Treat it as a
primitive, just like you would sin in a calculus class.

Problems 25

Quick re-cap:

Toolbox
Rule of Product: To calculate how many outcomes there are of a
multi-step procedure, multiply the numbers together.
Rule of Sum: If we have a counting argument that enumerates
disjoint cases, we can add the numbers together.
Counting By Complement: Sometimes, it’s easier to (1) count the
total, (2) count the number of things that don’t satisfy the property

Primitives
n!: The number of ways to order n distinct items(nk ): The number of ways to choose k of n distinct items.

DNA 26

DNA is made up of {A,C,T,G}. How many strands of DNA of length n
are there with exactly 4 C’s?

Proof.
We count this via the following process:

Choose which 4 of the n spots to put C’s in.
For each of the remaining spots, choose between A, T , and G.

The number of ways to do the first step is (n
4
), and the number of ways

to do the other n−4 steps is 3. Using the Rule of Product, we get that
there are (n

4
)3n−4 possible strands of DNA with 4 C’s.

Counting Cards 27

How many five card hands are there with three or four Aces?

“Proof.”
We count the hands with the following process:

Choose three of the four Aces.
Out of the remaining 49 cards, choose 2 of them.

By the Rule of Product, the number of five card hands with three or four
Aces is (43)(49

2 ).
Consider {A♠,A♡,A♣,A♢,4♣}

We could have gotten this set by. . .
Choosing A♠,A♡,A♣, and then choosing A♢,4♣.
Choosing A♢,A♡,A♣, and then choosing A♠,4♣.

Our argument overcounts! If a counting argument is correct, we
must be able to trace an output to a particular choice pattern.



Counting Cards 28

How many five card hands are there with three or four Aces?

Proof.
We partition on if there are three Aces or four.

If there are three Aces, choose which Aces there are, and then choose
two non-Aces. By Rule of Product, this works out to (4

3
)(48

2
).

If there are four Aces, choose all four Aces, and then choose the
remaining card. By Rule of Product, this works out to (4

4
)(48

1
).

Note that every hand with 3 or 4 Aces must either have 3 or 4 Aces, and
that no hand can have both 3 and 4 Aces; so, these cases form a
partition.It follows, by Rule of Sum, that the number of five card hands
with three or four Aces is (4

3
)(48

2
)+(4

4
)(48

1
).

Today’s Takeaways! 29

Hopefully you’re excited!

Why do we care about counting things?


