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Independence 1

Definition (Independence)

We say that two events A and B are independent i�

Pr(A∩B) = Pr(A)Pr(B)

Example

Let CP be the event that Pete comes to CSE 000 class. Let CS be the

event that Sandy comes to CSE 000 class. Empirically, we know that:

Pr(CP) = 1
Pr(CS) = 1

8

Pr(CP∩CS) = 1
8

Since

1
8 = 1

8 , Pr(CP) and Pr(CS) are independent!

What does this mean?

Tempting Answer: Pete and Sandy’s decisions to go to class aren’t reliant on

each other.

Actual Answer: There are a total of 8 sessions of CSE 000. Sandy met Pete at

the first class which they both attended. For all future sessions, Pete took

notes for Sandy, and she never showed up again.
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Rolling Dice 2

Consider the following experiment:

1 die1 = RollDie(6)
2 die2 = RollDie(6)

Let D1 be the event die1 = 1.

Let D2 be the event die2 = 1.

Let S5 be the event die1+die2 = 5.

Are D1 and D2 dependent or independent?

Pr(D1) = Pr(D2) = 1
6

; Pr(D1∩D2) = 1
36 . Note that �1

6
��1

6
� = 1

36
. So, D1

and D2 are independent.

Are D1 and S5 dependent or independent?

Note that �S5� = �{(1,4),(2,3),(3,2),(4,1)}� = 4. So, Pr(S5) = 4
36
= 1

9
, but

Pr(D1∩S5) = 1
36

. So, D1 and S5 are dependent events.
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Fair Coins 3

Consider the experiment where we flip n fair coins.

What is the probability that we get n HEADs?

1n

2n

What is the probability that the first 0 ≤ k ≤ n flips are HEADs and the

remaining ones are tails?

1n

2n

What is the probability that we get 0 ≤ k ≤ n HEADs overall?

�nk �
2n

Note that

n�
k=0
�n

k
��1

2
�n = �1

2
�n n�

k=0
�n

k
� = �1

2
�n

2n = 1.
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General Independence 4

In general, events E1,E2, . . . ,En are independent i� for every subset

S ⊆ [n], we have:

Pr��
i∈S Ei� =�

i∈S Pr(Ei)
That is, if we have E1,E2,E3, {E1,E2},{E1,E3},{E2,E3},{E1,E2,E3} all

have to be independent to consider E1, E2, and E3 independent.

Example

1 a = FlipCoin(1/2)
2 if a == HEADS:
3 b = RollDie(6)
4 c = RollDie(9)
5 else:
6 b = RollDie(6)
7 c = RollDie(4)

Let A be the event a = HEADS.

Let B be the event b = 1.

Let C be the event c = 1.

Are A, B, and C independent? What subsets of them are independent?



Example Continued 5

Example

1 a = FlipCoin(1/2)
2 if a == HEADS:
3 b = RollDie(6)
4 c = RollDie(9)
5 else:
6 b = RollDie(6)
7 c = RollDie(4)

Let A be the event a = HEADS.

Let B be the event b = 1.

Let C be the event c = 1.

Are A, B, and C independent? What subsets of them are independent?

Pr(A) = 1�2
Pr(B) = Pr(B � A)Pr(A)+Pr

�B � A�Pr

�A� = 1�6
Pr(C) = Pr(C � A)Pr(A)+Pr

�C � A�Pr

�A� = 13�72
Pr(A∩B) = Pr(B � A)Pr(A) = 1�12
Pr(A∩C) = Pr(C � A)Pr(A) = 1�27
Pr(B∩C) = Pr(B∩C � A)Pr(A)+Pr

�B∩C � A�Pr

�A� = 1�54
Pr(A∩B∩C) = Pr(B∩C � A)Pr(A) = 5�256



Biased Coins 6

Consider the experiment where we flip n independent coins with bias p
(Pr(HEADS) = p).

What is the probability that we get n HEADs?

pn

What is the probability that the first 0 ≤ k ≤ n flips are HEADs and the

remaining ones are tails?

pk(1− p)n−k

What is the probability that we get 0 ≤ k ≤ n HEADs overall?

�n
k
�pk(1− p)n−k

Note that

n�
k=0
�n

k
�pk(1− p)n−k = (p+(1− p))n = 1n = 1.
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Parallel Routers 7

Suppose there are n routers in parallel and the ith router fails

independently with probability pi.

C1 C2

p1

p2

⋮
pn−1

pn

What is the probability that C1 can communicate with C2?

Pr(C1 communicates with C2) = 1−Pr(all routers fail) = 1− p1 p2�pn
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Series Routers 8

Suppose there are n routers in series and the ith router fails

indepdendently with probability pi.

C1 C2pnpn−1
. . .

p2p1

What is the probability that C1 can communicate with C2?

Pr(C1 communicates with C2) = Pr(no router fails) =(1− p1)(1− p2)�(1− pn)



Conditional Probability Again 9

If Pr(F) > 0, then E and F are independent i� Pr(E � F) = Pr(E)
Proof.

(⇒) Since E and F are independent, Pr(E ∩F) = Pr(E)Pr(F). Then,

using the definition of conditional probability,

Pr(E)Pr(F) = Pr(E � F)Pr(F). So, Pr(E � F) = Pr(E).
(⇐) Since Pr(E � F) = Pr(E), we can apply the definition of conditional

probability to get

Pr(E ∩F)
Pr(F) = Pr(E) (since Pr(F) ≠ 0). Then, we have

Pr(E ∩F) = Pr(F)Pr(E).



Conditional Probability Again 9

If Pr(F) > 0, then E and F are independent i� Pr(E � F) = Pr(E)
Proof.

(⇒) Since E and F are independent, Pr(E ∩F) = Pr(E)Pr(F). Then,

using the definition of conditional probability,

Pr(E)Pr(F) = Pr(E � F)Pr(F). So, Pr(E � F) = Pr(E).
(⇐) Since Pr(E � F) = Pr(E), we can apply the definition of conditional

probability to get

Pr(E ∩F)
Pr(F) = Pr(E) (since Pr(F) ≠ 0). Then, we have

Pr(E ∩F) = Pr(F)Pr(E).


