Lecture 8



## Foundations of Computing II

CSE 312: Foundations of Computing II

# Independence

#### Definition (Independence)

We say that two events A and B are **independent** iff

 $\Pr(A \cap B) = \Pr(A)\Pr(B)$ 

#### Definition (Independence)

We say that two events A and B are **independent** iff

 $\Pr(A \cap B) = \Pr(A)\Pr(B)$ 

#### Example

Let  $C_P$  be the event that Pete comes to CSE 000 class.

#### Definition (Independence)

We say that two events A and B are **independent** iff

 $\Pr(A \cap B) = \Pr(A)\Pr(B)$ 

#### Example

Let  $C_P$  be the event that Pete comes to CSE 000 class. Let  $C_S$  be the event that Sandy comes to CSE 000 class.

## Definition (Independence)

We say that two events A and B are **independent** iff

 $\Pr(A \cap B) = \Pr(A)\Pr(B)$ 

#### Example

Let  $C_P$  be the event that Pete comes to CSE 000 class. Let  $C_S$  be the event that Sandy comes to CSE 000 class. Empirically, we know that:

$$\blacksquare \Pr(C_P) = 1$$

• 
$$\Pr(C_S) = \frac{1}{8}$$

• 
$$\mathsf{Pr}(C_P \cap C_S) = \frac{1}{8}$$

## Definition (Independence)

We say that two events A and B are **independent** iff

 $\Pr(A \cap B) = \Pr(A)\Pr(B)$ 

#### Example

Let  $C_P$  be the event that Pete comes to CSE 000 class. Let  $C_S$  be the event that Sandy comes to CSE 000 class. Empirically, we know that:

• 
$$\Pr(C_P) = 1$$

• 
$$\Pr(C_S) = \frac{1}{8}$$

• 
$$\mathsf{Pr}(C_P \cap C_S) = \frac{1}{8}$$

Since  $\frac{1}{8} = \frac{1}{8}$ ,  $Pr(C_P)$  and  $Pr(C_S)$  are independent!

#### What does this mean?

## Definition (Independence)

We say that two events A and B are **independent** iff

 $\Pr(A \cap B) = \Pr(A)\Pr(B)$ 

#### Example

Let  $C_P$  be the event that Pete comes to CSE 000 class. Let  $C_S$  be the event that Sandy comes to CSE 000 class. Empirically, we know that:

• 
$$\Pr(C_P) = 1$$

• 
$$\Pr(C_S) = \frac{1}{8}$$

• 
$$\mathsf{Pr}(C_P \cap C_S) = \frac{1}{8}$$

Since  $\frac{1}{8} = \frac{1}{8}$ ,  $Pr(C_P)$  and  $Pr(C_S)$  are independent!

#### What does this mean?

**Tempting Answer:** Pete and Sandy's decisions to go to class aren't reliant on each other.

## Definition (Independence)

We say that two events A and B are **independent** iff

 $\Pr(A \cap B) = \Pr(A)\Pr(B)$ 

#### Example

Let  $C_P$  be the event that Pete comes to CSE 000 class. Let  $C_S$  be the event that Sandy comes to CSE 000 class. Empirically, we know that:

$$\blacksquare \Pr(C_P) = 1$$

• 
$$\Pr(C_S) = \frac{1}{8}$$

• 
$$\mathsf{Pr}(C_P \cap C_S) = \frac{1}{8}$$

Since  $\frac{1}{8} = \frac{1}{8}$ ,  $Pr(C_P)$  and  $Pr(C_S)$  are independent!

#### What does this mean?

**Tempting Answer:** Pete and Sandy's decisions to go to class aren't reliant on each other.

**Actual Answer:** There are a total of 8 sessions of CSE 000. Sandy met Pete at the first class which they both attended. For all future sessions, Pete took notes for Sandy, and she never showed up again.

## **Rolling Dice**

Consider the following experiment:

- 1 die1 = **TollDic(**6)
- 2 die2 = RollDie(b)

Let  $D_1$  be the event die1 = 1. Let  $D_2$  be the event die2 = 1. Let  $S_5$  be the event die1+die2 = 5.

Are  $D_1$  and  $D_2$  dependent or independent?

$$\Pr(D_{2}) = \frac{1}{\zeta}$$
$$\Pr(D_{2}) = \frac{1}{\zeta}$$

$$\Pr(D_1 \cap D_2) = \frac{1}{36} = \left(\frac{1}{6}\right)$$

Are  $D_1$  and  $S_5$  dependent or independent?

$$Pr(D_{3}) = \frac{1}{6} \qquad Pr(D_{3}, 0.5_{5}) = \frac{1}{36}$$

$$Pr(S_{5}) = \frac{1}{9} \qquad IS_{5}|= \left|\xi(1, 4), (\lambda, 3), (3, 2), (4, 1), \xi\right|$$

## **Rolling Dice**

Consider the following experiment:

- 1 die1 = RollDie(6)
- 2 die2 = RollDie(6)

Let  $D_1$  be the event die1 = 1. Let  $D_2$  be the event die2 = 1. Let  $S_5$  be the event die1+die2 = 5.

Are  $D_1$  and  $D_2$  dependent or independent?

 $\Pr(D_1) = \Pr(D_2) = \frac{1}{6}$ ;  $\Pr(D_1 \cap D_2) = \frac{1}{36}$ . Note that  $\left(\frac{1}{6}\right)\left(\frac{1}{6}\right) = \frac{1}{36}$ . So,  $D_1$  and  $D_2$  are independent.

Are  $D_1$  and  $S_5$  dependent or independent?

## **Rolling Dice**

Consider the following experiment:

- 1 die1 = RollDie(6)
- 2 die2 = RollDie(6)

Let  $D_1$  be the event die1 = 1. Let  $D_2$  be the event die2 = 1. Let  $S_5$  be the event die1+die2 = 5.

Are  $D_1$  and  $D_2$  dependent or independent?

 $\Pr(D_1) = \Pr(D_2) = \frac{1}{6}$ ;  $\Pr(D_1 \cap D_2) = \frac{1}{36}$ . Note that  $\left(\frac{1}{6}\right)\left(\frac{1}{6}\right) = \frac{1}{36}$ . So,  $D_1$  and  $D_2$  are independent.

Are  $D_1$  and  $S_5$  dependent or independent?

Note that  $|S_5| = |\{(1,4), (2,3), (3,2), (4,1)\}| = 4$ . So,  $\Pr(S_5) = \frac{4}{36} = \frac{1}{9}$ , but  $\Pr(D_1 \cap S_5) = \frac{1}{36}$ . So,  $D_1$  and  $S_5$  are **dependent** events.

Consider the experiment where we flip n fair coins.

What is the probability that we get *n* HEADs?  $| \not{\exists} | = |^n = |$   $| \not{\exists} |$ 

121-22

What is the probability that the first  $0 \le k \le n$  flips are HEADs and the remaining ones are tails?

What is the probability that we get  $0 \le k \le n$  HEADs overall?  $| \underset{(k)}{\vdash} = \binom{n}{k}$  $| \underset{(k)}{\cup} = \underset{(k)}{\wedge}$ 

 $\binom{1}{2}^{n}$ 

Consider the experiment where we flip n fair coins.

■ What is the probability that we get *n* HEADs?

$$\frac{1^n}{2^n}$$

What is the probability that the first  $0 \le k \le n$  flips are HEADs and the remaining ones are tails?

Consider the experiment where we flip n fair coins.

• What is the probability that we get n HEADs?

What is the probability that the first  $0 \le k \le n$  flips are HEADs and the remaining ones are tails?

$$\frac{1^n}{2^n}$$

 $\frac{1^n}{2^n}$ 

Consider the experiment where we flip n fair coins.

• What is the probability that we get n HEADs?

What is the probability that the first  $0 \le k \le n$  flips are HEADs and the remaining ones are tails?

 $\frac{1^n}{2^n}$ 

$$\frac{1^n}{2^n}$$

What is the probability that we get  $0 \le k \le n$  HEADs overall?  $\frac{\binom{n}{k}}{2^n}$ 

Consider the experiment where we flip n fair coins.

■ What is the probability that we get *n* HEADs?

■ What is the probability that the first 0 ≤ k ≤ n flips are HEADs and the remaining ones are tails?

 $1^n$ 

$$\frac{1^n}{2^n}$$

What is the probability that we get  $0 \le k \le n$  HEADs overall?  $\frac{\binom{n}{k}}{2^n}$ 

Note that 
$$\sum_{k=0}^{n} {n \choose k} \left(\frac{1}{2}\right)^{n} = \left(\frac{1}{2}\right)^{n} \sum_{k=0}^{n} {n \choose k} = \left(\frac{1}{2}\right)^{n} 2^{n} = 1.$$

## **General Independence**

In general, events  $E_1, E_2, \ldots, E_n$  are independent iff for every subset  $S \subseteq [n]$ , we have:

 $\Pr\left(\bigcap_{i\in S} E_i\right) = \prod_{i\in S} \Pr(E_i)$ 

That is, if we have  $E_1, E_2, E_3$ ,  $\{E_1, E_2\}, \{E_1, E_3\}, \{E_2, E_3\}, \{E_1, E_2, E_3\}$  all have to be independent to consider  $E_1$ ,  $E_2$ , and  $E_3$  independent.

```
Example
  a = FlipCoin(1/2)
2
3
  if a == HEADS:
   b = RollDie(6)
4
     c = RollDie(9)
5
  else:
6
    b = RollDie(6)
     c = RollDie(4)
  Let A be the event a = HEADS.
   Let B be the event b = 1.
   Let C be the event c = 1.
  Are A, B, and C independent? What subsets of them are independent?
```

## **Example Continued**

Example a = FlipCoin(1/2)if a == HEADS: Pr(AOB) = Pr(AB) rr(B)3 b = RollDie(6)c = RollDie(9)5 else: Pr(A) = Pr(A|B)Pr(B) + Pr(A|B)Pr(B)b = RollDie(6)6 c = RollDie(4)Let A be the event a = HEADS. Let *B* be the event b = 1. Let *C* be the event c = 1. Are A, B, and C independent? What subsets of them are independent?  $Pr(A \cap B) = Pr(B \cap A) = Pr(B|A)P(A)$ Rr(B) = Pr(BIA) Pr(A) + Pr(BIA) W(B) Independent -Colorted  $P_{c}(c) = \frac{13}{72} \frac{1}{72} \frac{1}{2} \frac{1}{6} \frac{1}{76} \frac{1}{76}$ Pr(Bnc) = Pr(Bnc/A) Pr(A) + Ar(B

Consider the experiment where we flip n independent coins with bias p (Pr(HEADS) = p).

• What is the probability that we get n HEADs?

What is the probability that the first  $0 \le k \le n$  flips are HEADs and the remaining ones are tails?  $p^{k}(|-p)^{n-k}$ 

Consider the experiment where we flip n independent coins with bias p (Pr(HEADS) = p).

• What is the probability that we get n HEADs?

 $p^n$ 

What is the probability that the first  $0 \le k \le n$  flips are HEADs and the remaining ones are tails?

Consider the experiment where we flip n independent coins with bias p (Pr(HEADS) = p).

• What is the probability that we get n HEADs?

What is the probability that the first  $0 \le k \le n$  flips are HEADs and the remaining ones are tails?

 $p^n$ 

$$p^k(1-p)^{n-k}$$

Consider the experiment where we flip n independent coins with bias p (Pr(HEADS) = p).

• What is the probability that we get n HEADs?

What is the probability that the first  $0 \le k \le n$  flips are HEADs and the remaining ones are tails?

 $p^n$ 

$$p^k(1-p)^{n-k}$$

What is the probability that we get  $0 \le k \le n$  HEADs overall?  $\binom{n}{k}p^k(1-p)^{n-k}$ 

Consider the experiment where we flip n independent coins with bias p (Pr(HEADS) = p).

• What is the probability that we get n HEADs?

What is the probability that the first  $0 \le k \le n$  flips are HEADs and the remaining ones are tails?

 $p^n$ 

$$p^k(1-p)^{n-k}$$

What is the probability that we get  $0 \le k \le n$  HEADs overall?  $\binom{n}{k}p^k(1-p)^{n-k}$ 

Note that 
$$\sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} = (p+(1-p))^{n} = 1^{n} = 1.$$

## **Parallel Routers**

Suppose there are *n* routers in parallel and the *i*th router fails independently with probability  $p_i$ .



What is the probability that  $C_1$  can communicate with  $C_2$ ?

$$P_r(c_1 \text{ comm}, c_2) = |- P_r(all \text{ fail}) = |-\prod_{i=1}^{h} P_i$$

## **Parallel Routers**

Suppose there are n routers in parallel and the *i*th router fails independently with probability  $p_i$ .



What is the probability that  $C_1$  can communicate with  $C_2$ ?

 $Pr(C_1 \text{ communicates with } C_2) = 1 - Pr(all \text{ routers fail}) = 1 - p_1 p_2 \cdots p_n$ 

Suppose there are *n* routers in series and the *i*th router fails independently with probability  $p_i$ .



What is the probability that  $C_1$  can communicate with  $C_2$ ?

$$\Pr(C_1 \text{ communicates with } C_2) = \Pr(\text{no router fails}) = (1-p_1)(1-p_2)\cdots(1-p_n)$$

## **Conditional Probability Again**

If Pr(F) > 0, then E and F are independent iff Pr(E | F) = Pr(E)

#### Proof.



If  $\Pr(F) > 0$ , then E and F are independent iff  $\Pr(E | F) = \Pr(E)$ 

#### Proof.

(⇒) Since *E* and *F* are independent,  $Pr(E \cap F) = Pr(E)Pr(F)$ . Then, using the definition of conditional probability, Pr(E)Pr(F) = Pr(E | F)Pr(F). So, Pr(E | F) = Pr(E).

( $\Leftarrow$ ) Since  $\Pr(E | F) = \Pr(E)$ , we can apply the definition of conditional probability to get  $\frac{\Pr(E \cap F)}{\Pr(F)} = \Pr(E)$  (since  $\Pr(F) \neq 0$ ). Then, we have  $\Pr(E \cap F) = \Pr(F)\Pr(E)$ .