

Foundations of Computing II

CSE 312: Foundations of Computing I/

Independence

Independence

Definition (Independence)
We say that two events A and B are independent iff

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

Independence

Definition (Independence)

We say that two events A and B are independent iff

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

Example

Let C_{P} be the event that Pete comes to CSE 000 class.

Independence

Definition (Independence)

We say that two events A and B are independent iff

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

Example

Let C_{P} be the event that Pete comes to CSE 000 class. Let C_{S} be the event that Sandy comes to CSE 000 class.

Independence

Definition (Independence)

We say that two events A and B are independent iff

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

Example

Let C_{P} be the event that Pete comes to CSE 000 class. Let C_{S} be the event that Sandy comes to CSE 000 class. Empirically, we know that:

- $\operatorname{Pr}\left(C_{P}\right)=1$
- $\operatorname{Pr}\left(C_{S}\right)=\frac{1}{8}$
- $\operatorname{Pr}\left(C_{P} \cap C_{S}\right)=\frac{1}{8}$

Definition (Independence)

We say that two events A and B are independent iff

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

Example

Let C_{P} be the event that Pete comes to CSE 000 class. Let C_{S} be the event that Sandy comes to CSE 000 class. Empirically, we know that:

- $\operatorname{Pr}\left(C_{P}\right)=1$
- $\operatorname{Pr}\left(C_{S}\right)=\frac{1}{8}$
- $\operatorname{Pr}\left(C_{P} \cap C_{S}\right)=\frac{1}{8}$

Since $\frac{1}{8}=\frac{1}{8}, \operatorname{Pr}\left(C_{P}\right)$ and $\operatorname{Pr}\left(C_{S}\right)$ are independent!
What does this mean?

Definition (Independence)

We say that two events A and B are independent iff

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

Example

Let C_{P} be the event that Pete comes to CSE 000 class. Let C_{S} be the event that Sandy comes to CSE 000 class. Empirically, we know that:

- $\operatorname{Pr}\left(C_{P}\right)=1$
- $\operatorname{Pr}\left(C_{S}\right)=\frac{1}{8}$
- $\operatorname{Pr}\left(C_{P} \cap C_{S}\right)=\frac{1}{8}$

Since $\frac{1}{8}=\frac{1}{8}, \operatorname{Pr}\left(C_{P}\right)$ and $\operatorname{Pr}\left(C_{S}\right)$ are independent!
What does this mean?
Tempting Answer: Pete and Sandy's decisions to go to class aren't reliant on each other.

Definition (Independence)

We say that two events A and B are independent iff

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

Example

Let C_{P} be the event that Pete comes to CSE 000 class. Let C_{S} be the event that Sandy comes to CSE 000 class. Empirically, we know that:

- $\operatorname{Pr}\left(C_{P}\right)=1$
- $\operatorname{Pr}\left(C_{S}\right)=\frac{1}{8}$
- $\operatorname{Pr}\left(C_{P} \cap C_{S}\right)=\frac{1}{8}$

Since $\frac{1}{8}=\frac{1}{8}, \operatorname{Pr}\left(C_{P}\right)$ and $\operatorname{Pr}\left(C_{S}\right)$ are independent!
What does this mean?
Tempting Answer: Pete and Sandy's decisions to go to class aren't reliant on each other.
Actual Answer: There are a total of 8 sessions of CSE 000. Sandy met Pete at the first class which they both attended. For all future sessions, Pete took notes for Sandy, and she never showed up again.

Consider the following experiment:

$$
\begin{aligned}
& \text { die 1 }=\text { Red re }(6) \\
& \text { die 2 }=\text { Roltifie(} 0)
\end{aligned}
$$

Let D_{1} be the event die $=1$.
Let D_{2} be the event die $=1$.
Let S_{5} be the event die + die $=5$.
Are D_{1} and D_{2} dependent or independent?

$$
\begin{array}{ll}
\operatorname{Pr}\left(D_{1}\right)=\frac{1}{6} & \left.\operatorname{Pr}\left(D_{1} \cap D_{2}\right)=\frac{1}{36}=\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)\right)
\end{array}
$$

Are D_{1} and S_{5} dependent or independent?

$$
\begin{array}{lc}
\operatorname{Pr}(D,)=\frac{1}{6} & \operatorname{Pr}\left(1, \cap S_{5}\right)=\frac{1}{36} \\
\operatorname{Pr}\left(S_{s}\right)=\frac{1}{9} & \left|S_{5}\right|=|\{(1,4),(2,3),(3,2),(4,1)\}|
\end{array}
$$

Rolling Dice

Consider the following experiment:

```
1 die1 = RollDie(6)
```

2 die2 = Roll.Die(6)
Let D_{1} be the event die1 $=1$.
Let D_{2} be the event die2 $=1$.
Let S_{5} be the event die1 + die2 $=5$.
Are D_{1} and D_{2} dependent or independent?

$$
\begin{aligned}
& \operatorname{Pr}\left(D_{1}\right)=\operatorname{Pr}\left(D_{2}\right)=\frac{1}{6} ; \operatorname{Pr}\left(D_{1} \cap D_{2}\right)=\frac{1}{36} \text {. Note that }\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)=\frac{1}{36} \text {. So, } D_{1} \\
& \text { and } D_{2} \text { are independent. }
\end{aligned}
$$

Are D_{1} and S_{5} dependent or independent?

Consider the following experiment:
1 die1 = RollDie(6)
2 die2 = RollDie(6)
Let D_{1} be the event die1 $=1$.
Let D_{2} be the event die2 $=1$.
Let S_{5} be the event die1 + die2 $=5$.
Are D_{1} and D_{2} dependent or independent?

$$
\begin{aligned}
& \operatorname{Pr}\left(D_{1}\right)=\operatorname{Pr}\left(D_{2}\right)=\frac{1}{6} ; \operatorname{Pr}\left(D_{1} \cap D_{2}\right)=\frac{1}{36} \text {. Note that }\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)=\frac{1}{36} \text {. So, } D_{1} \\
& \text { and } D_{2} \text { are independent. }
\end{aligned}
$$

Are D_{1} and S_{5} dependent or independent?

$$
\begin{aligned}
& \text { Note that }\left|S_{5}\right|=|\{(1,4),(2,3),(3,2),(4,1)\}|=4 \text {. So, } \operatorname{Pr}\left(S_{5}\right)=\frac{4}{36}=\frac{1}{9} \text {, but } \\
& \operatorname{Pr}\left(D_{1} \cap S_{5}\right)=\frac{1}{36} \text {. So, } D_{1} \text { and } S_{5} \text { are dependent events. }
\end{aligned}
$$

Consider the experiment where we flip n fair coins.
What is the probability that we get n HEADs?

$$
\begin{aligned}
& |t|=1^{n}=1 \\
& |\Omega|=2^{n}
\end{aligned} \quad\left(\frac{1}{2}\right)^{n}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?

$$
\begin{aligned}
& |E|^{n} \quad\left(\frac{1}{2}\right)^{n} \\
& |\Omega|=2^{n}
\end{aligned}
$$

- What is the probability that we get $0 \leq k \leq n$ HEADs overall?

$$
\begin{aligned}
& |E|=\binom{n}{k} \\
& |\Omega|=2^{n}
\end{aligned}
$$

Consider the experiment where we flip n fair coins.

- What is the probability that we get n HEADs?

$$
\frac{1^{n}}{2^{n}}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?
- What is the probability that we get $0 \leq k \leq n$ HEADs overall?

Consider the experiment where we flip n fair coins.

- What is the probability that we get n HEADs?

$$
\frac{1^{n}}{2^{n}}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?

$$
\frac{1^{n}}{2^{n}}
$$

What is the probability that we get $0 \leq k \leq n$ HEADs overall?

Consider the experiment where we flip n fair coins.

- What is the probability that we get n HEADs?

$$
\frac{1^{n}}{2^{n}}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?

$$
\frac{1^{n}}{2^{n}}
$$

- What is the probability that we get $0 \leq k \leq n$ HEADs overall?

$$
\frac{\binom{n}{k}}{2^{n}}
$$

Consider the experiment where we flip n fair coins.

- What is the probability that we get n HEADs?

$$
\frac{1^{n}}{2^{n}}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?

$$
\frac{1^{n}}{2^{n}}
$$

- What is the probability that we get $0 \leq k \leq n$ HEADs overall?

$$
\frac{\binom{n}{k}}{2^{n}}
$$

Note that $\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{n} \sum_{k=0}^{n}\binom{n}{k}=\left(\frac{1}{2}\right)^{n} 2^{n}=1$.

In general, events $E_{1}, E_{2}, \ldots, E_{n}$ are independent iff for every subset $S \subseteq[n]$, we have:

$$
\operatorname{Pr}\left(\bigcap_{i \in S} E_{i}\right)=\prod_{i \in S} \operatorname{Pr}\left(E_{i}\right)
$$

That is, if we have $E_{1}, E_{2}, E_{3},\left\{E_{1}, E_{2}\right\},\left\{E_{1}, E_{3}\right\},\left\{E_{2}, E_{3}\right\},\left\{E_{1}, E_{2}, E_{3}\right\}$ all have to be independent to consider E_{1}, E_{2}, and E_{3} independent.

Example

1

```
a = FlipCoin(1/2)
if a == HEADS:
    b = RollDie(6)
    c = RollDie(9)
else:
    b = RollDie(6)
    c = RollDie(4)
```

Let A be the event $\mathrm{a}=$ HEADS.
Let B be the event $\mathrm{b}=1$.
Let C be the event $\mathrm{c}=1$.
Are A, B, and C independent? What subsets of them are independent?

Example Continued
Example

$$
\begin{aligned}
& \text { a = FlipCoin(1/2) } \\
& \text { if a == HEADS: } \\
& \mathrm{b}=\text { RollDie(6) } \\
& \text { c = RollDie(9) } \\
& \begin{array}{l}
\text { else: } \\
\mathrm{b}=\operatorname{RollDie}(6)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
b=\operatorname{RollDie}(6) \\
c=\operatorname{RollDie}(4)
\end{array} \quad \operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})
\end{aligned}
$$

Let A be the event a = HEADS.
Let B be the event $\mathrm{b}=1$.
Let C be the event $\mathrm{c}=1$.
Are A, B, and C independent? What subsets of them are independent?

$$
\begin{aligned}
& P_{r}(A)=\frac{1}{2} \\
& \operatorname{Pr}(A \cap B)=\operatorname{Pr}(B \cap A)=\operatorname{Pr}(B A) \operatorname{Pr}(A)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6} \frac{1}{2}+\frac{1}{6} \frac{1}{2}=\frac{1}{6} \operatorname{Pr}(B \cap C)=\frac{\text { notated }}{\sim} \rightarrow \text { not related }
\end{aligned}
$$

Consider the experiment where we flip n independent coins with bias p $(\operatorname{Pr}($ HEADS $)=p)$.

What is the probability that we get n HEADs?

$$
p^{n}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?

$$
p^{k}(1-p)^{n-k}
$$

- What is the probability that we get $0 \leq k \leq n$ HEADs overall?

Consider the experiment where we flip n independent coins with bias p $(\operatorname{Pr}($ HEADS $)=p)$.

What is the probability that we get n HEADs?

$$
p^{n}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?

What is the probability that we get $0 \leq k \leq n$ HEADs overall?

Consider the experiment where we flip n independent coins with bias p $(\operatorname{Pr}(\operatorname{HEADS})=p)$.

What is the probability that we get n HEADs?

$$
p^{n}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?

$$
p^{k}(1-p)^{n-k}
$$

- What is the probability that we get $0 \leq k \leq n$ HEADs overall?

Consider the experiment where we flip n independent coins with bias p $(\operatorname{Pr}(\operatorname{HEADS})=p)$.

What is the probability that we get n HEADs?

$$
p^{n}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?

$$
p^{k}(1-p)^{n-k}
$$

- What is the probability that we get $0 \leq k \leq n$ HEADs overall?

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Consider the experiment where we flip n independent coins with bias p $(\operatorname{Pr}($ HEADS $)=p)$.

What is the probability that we get n HEADs?

$$
p^{n}
$$

- What is the probability that the first $0 \leq k \leq n$ flips are HEADs and the remaining ones are tails?

$$
p^{k}(1-p)^{n-k}
$$

- What is the probability that we get $0 \leq k \leq n$ HEADs overall?

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note that $\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1^{n}=1$.

Suppose there are n routers in parallel and the i th router fails independently with probability p_{i}.

What is the probability that C_{1} can communicate with C_{2} ?
$\operatorname{Pr}\left(C_{1} \operatorname{comm}-C_{2}\right)=1-\operatorname{Pr}($ all Fail $)=1-\prod_{i=1}^{n}$

Suppose there are n routers in parallel and the i th router fails independently with probability p_{i}.

What is the probability that C_{1} can communicate with C_{2} ?
$\operatorname{Pr}\left(C_{1}\right.$ communicates with $\left.C_{2}\right)=1-\operatorname{Pr}($ all routers fail $)=1-p_{1} p_{2} \cdots p_{n}$

Series Routers

Suppose there are n routers in series and the i th router fails indepdendently with probability p_{i}.

What is the probability that C_{1} can communicate with C_{2} ?

$$
\begin{aligned}
& \operatorname{Pr}\left(C_{1} \text { communicates with } C_{2}\right)=\operatorname{Pr}(\text { no router fails })= \\
& \left(1-p_{1}\right)\left(1-p_{2}\right) \cdots\left(1-p_{n}\right)
\end{aligned}
$$

Conditional Probability Again

If $\operatorname{Pr}(F)>0$, then E and F are independent iff $\operatorname{Pr}(E \mid F)=\operatorname{Pr}(E)$
Proof.

If $\operatorname{Pr}(F)>0$, then E and F are independent iff $\operatorname{Pr}(E \mid F)=\operatorname{Pr}(E)$

Proof.

(\Rightarrow) Since E and F are independent, $\operatorname{Pr}(E \cap F)=\operatorname{Pr}(E) \operatorname{Pr}(F)$. Then, using the definition of conditional probability, $\operatorname{Pr}(E) \operatorname{Pr}(F)=\operatorname{Pr}(E \mid F) \operatorname{Pr}(F)$. So, $\operatorname{Pr}(E \mid F)=\operatorname{Pr}(E)$.
(\Leftarrow) Since $\operatorname{Pr}(E \mid F)=\operatorname{Pr}(E)$, we can apply the definition of conditional probability to get $\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(F)}=\operatorname{Pr}(E)($ since $\operatorname{Pr}(F) \neq 0)$. Then, we have $\operatorname{Pr}(E \cap F)=\operatorname{Pr}(F) \operatorname{Pr}(E)$.

