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Fancy Counting
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Balls and Bins 1

Many of the questions we ask in counting are instances of the question:

How many ways are there to place n balls into m bins?

n Indistinguishable Balls
m Distinguishable Bins

n Distinguishable Balls
m Distinguishable Bins

Exactly
One

At Most
One Together

At Least
One HW Together

Any
Number Together

Balls and Bins 2

n Indistinguishable Balls
m Distinguishable Bins

n Distinguishable Balls
m Distinguishable Bins

Exactly
One 1 if n =m else 0 n! if n =m else 0

At Most
One (m

n
) Together(m

n
)n!

At Least
One HW Together

Any
Number Together mn

How many ways can the balls match up with the bins? How many ways
there are to rearrange the balls to match up with the bins? Since the
balls are indistinguishable, we’re just choosing which bins to put them in.
For each ball, choose a bin (with replacement) Choose which bins get a
ball, then order the balls

Stars and Bars 3

How many ways are there to place n indistinguishable balls into m
distinguishable bins?

Start out with n+m−1 indistinguishable ○’s:
○○○○ ⋅ ⋅ ⋅ ○○○○´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+m−1 of these

Choose m−1 of the ○’s to turn into “dividers”:

○○ ∣∣○ ⋅ ⋅ ⋅ ○ ∣○○´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n ○’s, m−1 dividers

This means that there are n balls and m−1 dividers (which makes m
bins!). The only step in our counting argument was to choose m−1 of
the n+m−1 ○’s to be dividers. So, there are (n+m−1

m−1 ) ways to place these
balls into bins.
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n Indistinguishable Balls
m Distinguishable Bins

n Distinguishable Balls
m Distinguishable Bins

Exactly
One 1 if n =m else 0 m! if n =m else 0

At Most
One (m

n
) (m

n
)m!

At Least
One HW Together

Any
Number (n+m−1

m−1
) mn



Inclusion-Exclusion 5

Remember how we started counting with set laws? Well, there’s one
more. . .

∣A1∪A2∣ = ∣A1∣+ ∣A2∣− ∣A1∩A2∣
This is called inclusion-exclusion, and it’s useful for when you want to
compute the size of a union that isn’t disjoint.
Going to three sets, we have:

∣A1∪A2∪A3∣= ∣A1∣+ ∣A2∣+ ∣A3∣−(∣A1∩A2∣+ ∣A1∩A3∣+ ∣A2∩A3∣)+ ∣A1∩A2∩A3∣
More generally, Inclusion-Exclusion says:

singles - doubles + triples - quads + . . .

The next obvious question is “how do I use this?”. The big thing to get
about inclusion-exclusion is how to define the Ai’s.
Let’s do an example.

Triple the Example, Triple the Fun 6

How many ways are there to choose three numbers from three sets (A, B,
and C) such that:

A = {1,2,3, . . .n}
B = {1,2,3, . . . ,m}
C = {1,2,3, . . . ,`}
At least one of the numbers chosen is a 1.

The reason we should think inclusion-exclusion is that the problem
specifies “at least” about something related to all the sets.

There are three sets here; so, it’s likely that we’ll be using
inclusion-exclusion with three Ai’s:

∣A1∪A2∪A3∣= ∣A1∣+ ∣A2∣+ ∣A3∣−(∣A1∩A2∣+ ∣A1∩A3∣+ ∣A2∩A3∣)+ ∣A1∩A2∩A3∣
Before we do anything else, we need to determine what Ai is supposed to
be. If we have defined things correctly, then the set we’re looking for
should be A1∪A2∪A3.

Triple the Example, Triple the Fun 7

How many ways are there to choose three numbers from three sets (A, B,
and C) such that:

A = {1,2,3, . . .n}
B = {1,2,3, . . . ,m}
C = {1,2,3, . . . ,`}
At least one of the numbers chosen is a 1.

We want to use:

Ai is the set of triples with the ith coordinate equal to 1.

∣A1∪A2∪A3∣= ∣A1∣+ ∣A2∣+ ∣A3∣−(∣A1∩A2∣+ ∣A1∩A3∣+ ∣A2∩A3∣)+ ∣A1∩A2∩A3∣
∣A1∪A2∪A3∣ =m`+n`+nm−(`+m+n)+1

Back to our problem. . . 8

How many ways are there to place n distinguishable balls into m
distinguishable bins such that every bin gets at least one ball?
Let’s count by complement:

How many ways are there to place n distinguishable balls into m
distinguishable bins such that some bin gets no balls?

What are our Ai’s?

Ai is the set of outcomes with no balls in the ith bin.

Back to our problem. . . (continued) 9

How many ways are there to place n distinguishable balls into m
distinguishable bins such that some bin gets no balls?

Ai is the set of outcomes with no balls in the ith bin.

Inclusion-exclusion works by counting the sizes of the various
intersections.

Consider the intersection of k distinct Ai’s. That is, how many ways are
there to place the balls in the bins such that some bin gets no balls AND
each of the k Ai’s gets no balls?

What is the cardinality of this set?

Well, regardless of which Ai’s, we already have at least one bin with no
balls. So, all we have to do is assign every ball to one of the other bins.

There are (m−k)n ways to do this.

Back to our problem. . . (continued) 10

How many ways are there to place n distinguishable balls into m
distinguishable bins such that some bin gets no balls?

Ai is the set of outcomes with no balls in the ith bin.

∣Ax1 ∩Ax2 ∩⋯∩Axk ∣ = (m−k)n
How many ways are there to choose k of the Ai’s?

There are m Ai’s; so, to choose k of them...(m
k
).

Putting it all together. . .
(m1 )(m−1)n−(m2 )(m−2)n+⋅ ⋅ ⋅+(−1)k+1(mk )(m−k)n+⋅ ⋅ ⋅+(mm)(m−m)n

So, we get
k∑

i=1
(−1)k+1(m

k
)(m−k)n.

Finally, recall that we are counting by complement. So, we subtract
our answer from mn.
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n Indistinguishable Balls
m Distinguishable Bins

n Distinguishable Balls
m Distinguishable Bins

Exactly
One 1 if n =m else 0 m! if n =m else 0

At Most
One (m

n
) (m

n
)m!

At Least
One HW

m∑
k=0
(−1)k(m

k
)(m−k)n

Any
Number (n+m−1

m−1
) mn

Pigeonhole Principle 12

Pigeonhole Principle
If you have n pigeons and m holes where m < n, then two pigeons must be
in the same hole.
If you’re at a party and some number of the n people shake hands, must
two of them have shaken the same number of hands?
Solution
Note that someone either shakes hands with everyone or not. If someone
does, then nobody shakes hands 0 times; if somebody does not, then
nobody shakes hands n times. Either way, there are only n−1 options for
n people; so, by the pigeonhole principle, two people shake the same
number of hands.

Pigeonhole Principle 13

Pigeonhole Principle
If you have n pigeons and m holes where m < n, then two pigeons must be
in the same hole.
If you have six people who are either mutual friends or mutual strangers,
prove there is a group of 3 strangers or 3 friends.

Solution
Consider one of the people, Sally. She has five “connections” to other
people; so, by the pigeonhole principle, 3 of them must be strangers or
friends. Without loss of generality, suppose they’re friends with Sally.
Consider the connections between pairs of those friends. If any of them
are friends, we’re done. Otherwise, they’re all strangers, and we’re done.


