Adam Blank

Foundations of Computing II

Probability Axioms \& Equally-Likely Outcomes

int getRandomNumber()
ई
return 4; // chosen by fair dice roll. // guaranteed to be random.

Some Code

Consider the following piece of code:

```
1 while FlipCoin(1/2) # HEADS:
2 print "Hello!"
```

Does it terminate?
Despite the answer seeming like an obvious "almost certainly", we don't really have the tools to give a real answer. . .

That's what pretty much the rest of the course is about!
To drive the point home, we will use probability as a way of analyzing code with randomized components.

For now, assume we have two random generators:

- FlipCoin(p) returns HEADS with probability p and TAILS otherwise.
- RollDie (N) returns $x \in[N]$ with probability $1 / N$.
(We will do better later, but for now. . .)

Suppose we have a piece of random code \mathcal{R}. We want to be able to reason about \mathcal{R} formally; so, we use the following definitions:

Definition (Outcome)
An outcome for \mathcal{R} is a sequence of values for all random calls in \mathcal{R}. For example, if our code is

$$
\begin{aligned}
& c=\text { FlipCoin(1/2) } \\
& d=\text { RollDie(2) } \\
& \text { if } c==\text { HEADS : c = } 1 \\
& \text { else: } c=2 \\
& \text { if } c==d: \text { print c } \\
& \text { else: print "Failure!" }
\end{aligned}
$$

The possible outcomes are:

$$
(\text { HEADS, } 1),(\text { HEADS }, 2),(\text { TAILS, } 1),(\text { TAILS, } 2)
$$

More Definitions

Suppose we have a piece of random code \mathcal{R}. We want to be able to reason about \mathcal{R} formally; so, we use the following definitions:

Definition (Outcome)
An outcome for \mathcal{R} is a sequence of values for all random calls in \mathcal{R}.
Definition (Sample Space)
The Sample Space of \mathcal{R} is the set of all possible outcomes of running \mathcal{R}.

Definition (Event)

An event is a subset of the sample space. We call these events, because they represent things that can happen. Consider the code from before:

```
c = FlipCoin(1/2)
d = RollDie(2)
if c == HEADS: c = 1
else: c = 2
if c == d: print c
else: print "Failure!"
```

Here's some events:

- The code prints "Failure!" $\{($ HEADS, 2$),($ TAILS, 1$)\}$
- The code halts. $\{($ HEADS, 1$),($ HEADS, 2$),($ TAILS, 1$),($ TAILS, 2$)\}$
- The coin flip gives HEADS. $\{($ HEADS, 1$),($ HEADS, 2$)\}$

Definition (Probability)

Let Ω be a sample space and $E \subseteq \Omega$ be an event. Then, we say $\operatorname{Pr}(E)$ is the probability of E.
All probability functions must satisfy the following three axioms:

- $0 \leq \operatorname{Pr}(E)$
- $\operatorname{Pr}(\Omega)=1$
- If $E_{1}, E_{2}, \ldots, E_{n} \subseteq \Omega$ and are pairwise disjoint events, then

$$
\operatorname{Pr}\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)
$$

An Axiomatic Proof

Claim

$\operatorname{Pr}(\bar{E})=1-\operatorname{Pr}(E)$

Proof.

Note that $\operatorname{Pr}(\Omega)=1$ by the second axiom. Furthermore, $E \cup \bar{E}=\Omega$ for all events E; so, $1=\operatorname{Pr}(\Omega)=\operatorname{Pr}(E \cup \bar{E})=\operatorname{Pr}(E)+\operatorname{Pr}(\bar{E})$ by the above and axiom 3. Then, $\operatorname{Pr}(\bar{E})=1-\operatorname{Pr}(E)$.

Code
1 coin1 = FlipCoin(1/2)
$2 \operatorname{coin2}=$ FlipCoin(1/2)

Sample Space (All potential outcomes of the random calls)
$\Omega=\{($ HEADS, HEADS $),($ HEADS, TAILS $),(T A I L S, H E A D S),(T A I L S, T A I L S)\}$

Example Events ($E \subseteq \Omega$)

- \varnothing
- $\{($ HEADS, HEADS $)\}$
- coin1 = HEADS

Equally-Likely Outcomes

```
1 flip = FlipCoin(1/2)
    \Omega={HEADS,TAILS }
```

```
1 flip1 = FlipCoin(1/2)
2 flip2 = FlipCoin(1/2)
    \Omega={(HEADS, HEADS),(HEADS,TAILS),(TAILS, HEADS),(TAILS,TAILS)}
```

1 roll = RollDie(6)
$\Omega=\{1,2,3,4,5,6\}$
flip $=$ FlipCoin(1/3)

$$
\Omega=\{\operatorname{HEADS}, \mathrm{TAILS}\}
$$

$$
\operatorname{Pr}(\text { HEADS })=\left(\frac{1}{3}\right) \quad \operatorname{Pr}(\text { TAILS })=\left(\frac{2}{3}\right)
$$

```
flip = FlipCoin(1/2)
if flip == HEADS:
    flip2 = RollDie(2)
else:
    flip2 = RollDie(3)
        \Omega={(HEADS,1),(HEADS, 2),(TAILS, 1),(TAILS, 2),(TAILS, 3)}
    Pr}((\mathrm{ HEADS, 1))=( }\frac{1}{2}\mp@subsup{)}{}{2}\quad\operatorname{Pr}((\mathrm{ TAILS, 1)) = ( }\frac{1}{2})(\frac{1}{3}
```

We'll stick with equally-likely outcomes for now.

If we have a sample space, Ω, and all the outcomes are equally-likely, then the $\operatorname{Pr}(\{x\})=\frac{1}{|\Omega|}$. So, $\operatorname{Pr}\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)=\frac{n}{|\Omega|}$. So, $\operatorname{Pr}(E)=\frac{|E|}{|\Omega|}$.

A's Gambling Problem(s)

One of the TAs has a gambling problem. They make all of the following bets with Adam:

- I bet a fair coin will come up HEADS.
- I bet a six-sided die will be even.
- I bet if each of us rolls a six-sided die, the sum will be 7 .

Let's model each of these with code, determine the events and sample space, and evaluate the probabilities of each.

$$
\begin{aligned}
& 1 \text { coin = FlipCoin (1/2) } \\
& \Omega=\{\text { HEADS, TAILS }\} \\
& E=\{\text { HEADS }\} \\
& \operatorname{Pr}(E)=\frac{|E|}{|\Omega|}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { roll = RollDie(6) } \\
& \quad \Omega=\{1,2,3,4,5,6\} \\
& E=\{2,4,6\} \\
& \operatorname{Pr}(E)=\frac{|E|}{|\Omega|}=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

```
1 adamRoll = RollDie(6)
2 taRoll = RollDie(6)
```

What is $\operatorname{Pr}($ adamRoll + taRoll $=7) ?$

$$
\begin{array}{rllllll}
\Omega=\left\{\begin{array}{llllll}
(1,1), & (1,2), & (1,3), & (1,4), & (1,5), & (1,6), \\
& (2,1), & (2,2) & (2,3), & (2,4), & (2,5), \\
(3,1), & (3,2) & (3,3), & (3,4), & (3,5), & (3,6), \\
& (4,1), & (4,2), & (4,3), & (4,4), & (4,5), \\
& (4,6), & \\
& (5,1), & (5,2), & (5,3) & (5,4), & (5,5), \\
(6,1), & (6,2), & (6,3) & (6,4), & (6,5), & (6,6)
\end{array}\right\} \\
E=\left\{\begin{array}{lllllll}
& (6,1), & (5,2), & (4,3), & (3,4), & (2,5) & (1,6)
\end{array}\right\}
\end{array}
$$

So, $\operatorname{Pr}(\operatorname{adamRoll}+$ taRoll $=7)=\frac{|E|}{|S|}=\frac{6}{36}=\frac{1}{6}$

What is the probability that none of n people share the same birthday?

```
1 person1 = RollDie(1/365)
2 person2 = RollDie(1/365)
3 ...
4 person365 = RollDie(1/365)
```

What assumptions have we implicitly made with this code?

- Birthdays are equally likely (not actually true. . . but close enough)

What is the sample space?
$|\Omega|=\left|\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): 0<x_{i} \leq 365\right\}\right|=365^{n}$
Let E be the event that all people have different birthdays.
What is E ?
$|E|=365 \times 364 \times \cdots \times(365-n+1)$

What is the probability that none of n people share the same birthday?
Let E be the event that all people have different birthdays.

$$
\begin{aligned}
& |\Omega|=365^{n} \\
& |E|=365 \times 364 \times \cdots \times(365-n+1) \\
& \text { So, } \operatorname{Pr}(\text { no shared birthdays })=\frac{|E|}{|\Omega|}=\frac{365 \times 364 \cdots \times(365-n+1)}{365^{n}} .
\end{aligned}
$$

Notice that as low as $n=23$, the probability is already less than 0.5.

Chips

The Situation

- n chips manufactured
- k chips randomly selected for testing
- one chip defective

What is Pr (defective chip in k selected chips)?

- $|\Omega|=\binom{n}{k}$
- $|E|=\binom{1}{1}\binom{n-1}{k-1}$ (choose defective chip; pick remaining chips to test)
- $\operatorname{Pr}($ defective chip in k selected chips $)=\frac{|E|}{|\Omega|}=\frac{\binom{1}{1}\binom{n-1}{k-1}}{\binom{n}{k}}$

What is Pr (the i th selected chip is defective)?

It is equally likely that each of the n chips is the defective one.
So, $\operatorname{Pr}($ the i th selected chip is defective $)=\operatorname{Pr}\left(E_{i}\right)=\frac{1}{n}$
$\operatorname{Pr}($ defective chip in k selected chips $)=\operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)+\cdots+\operatorname{Pr}\left(E_{k}\right)=\frac{k}{n}$.

The Situation

- n chips manufactured
- k chips randomly selected for testing
- d chips defective

What is Pr (at least one defective chip in k selected chips)?
Consider Pr (no chip defective in k selected chips) instead.

- $|\Omega|=\binom{n}{k}$
- $|E|=\binom{n-d}{k}$ (choose from non-defective chips)
$\square \operatorname{Pr}($ at least one defective in $k)=1-\frac{|E|}{|\Omega|}=1-\frac{\binom{n-d}{k}}{\binom{n}{k}}$

