

CSE 312: Foundations of Computing II

Probability Axioms & Equally-Likely Outcomes

int getRandomNumber()

return 4; // chosen by fair dice roll. // guaranteed to be random.

Some Code

Consider the following piece of code:

1 while FlipCoin(1/2) ≠ HEADS: 2 print "Hello!"

Does it terminate?

Despite the answer seeming like an obvious "almost certainly", we don't really have the tools to give a real answer. \ldots

That's what pretty much the rest of the course is about!

To drive the point home, we will use probability as a way of **analyzing code with randomized components**.

Probability Primitives

£

}

For now, assume we have two random generators:

- FlipCoin(p) returns HEADS with probability p and TAILS otherwise.
 RollDie(N) returns x ∈ [N] with probability 1/N.
- (We will do better later, but for now...)

Definitions

Suppose we have a piece of random code $\mathcal{R}.$ We want to be able to reason about $\mathcal R$ formally; so, we use the following definitions:

Definition (Outcome)

An outcome for ${\cal R}$ is a sequence of values for all random calls in ${\cal R}.$ For example, if our code is

3 4 **if** c == HEADS: c = 1

7 if c == d: print c
8 else: print "Failure!"

The possible outcomes are:

(HEADS, 1), (HEADS, 2), (TAILS, 1), (TAILS, 2)

More Definitions

Suppose we have a piece of random code $\mathcal{R}.$ We want to be able to reason about $\mathcal R$ formally; so, we use the following definitions:

Definition (Outcome)

An outcome for ${\mathcal R}$ is a sequence of values for all random calls in ${\mathcal R}.$

Definition (Sample Space)

The Sample Space of ${\mathcal R}$ is the set of all possible outcomes of running ${\mathcal R}.$

Even More Definitions

Definition (Event)

 $\{(\text{HEADS}, 1), (\text{HEADS}, 2)\}$

1

3

4

5

6

8

An ${\bf event}$ is a subset of the sample space. We call these events, because they represent things that can happen. Consider the code from before:

c = FlipCoin(1/2) d = RollDie(2) if c == HEADS: c = 1 else: c = 2 if c == d: print c else: print "Failure!" Here's some events: The code prints "Failure!" {(HEADS,2),(TAILS,1)} The code halts. {(HEADS,1),(HEADS,2),(TAILS,1),(TAILS,2)} The coin flip gives HEADS.

Definition (Probability)

Let Ω be a sample space and $E \subseteq \Omega$ be an event. Then, we say Pr(E) is the probability of E.

6

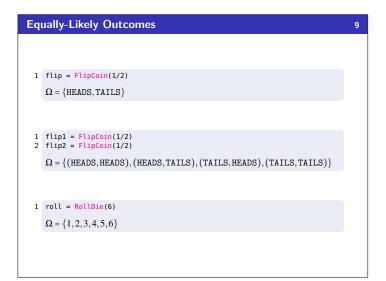
All probability functions must satisfy the following three axioms:

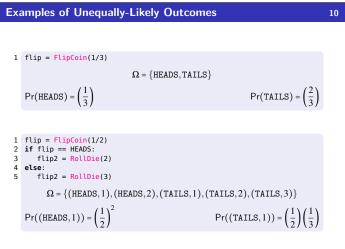
- $\bullet 0 \le \Pr(E)$
- Pr(Ω) = 1
- If $E_1, E_2, \ldots, E_n \subseteq \Omega$ and are pairwise disjoint events, then

$$\Pr(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum_{i=1}^n \Pr(E_i)$$

An Axiomatic Proof	7	Defini
Claim $\Pr(\overline{E}) = 1 - \Pr(E)$ Proof. Note that $\Pr(\Omega) = 1$ by the second axiom. Furthermore, $E \cup \overline{E} = \Omega$ for all events E ; so, $1 = \Pr(\Omega) = \Pr(E \cup \overline{E}) = \Pr(E) + \Pr(\overline{E})$ by the above and axiom 3. Then, $\Pr(\overline{E}) = 1 - \Pr(E)$.		Coo 1 coi 2 coi Sar
		Exa

De	finitions Recap	8
	Code	
	<pre>coin1 = FlipCoin(1/2) coin2 = FlipCoin(1/2)</pre>	
	Sample Space (All potential outcomes of the random calls)	
	$\Omega = \{(\texttt{HEADS},\texttt{HEADS}),(\texttt{HEADS},\texttt{TAILS}),(\texttt{TAILS},\texttt{HEADS}),(\texttt{TAILS},\texttt{TAILS})\}$	
	Example Events $(E \subseteq \Omega)$	
	Ø	
	$\blacksquare \{(\text{HEADS}, \text{HEADS})\}$	
	■ coin1 = HEADS	





Equally-Likely Outcomes For Now

We'll stick with equally-likely outcomes for now.

If we have a sample space, Ω , and all the outcomes are equally-likely, then the $\Pr(\{x\}) = \frac{1}{|\Omega|}$. So, $\Pr(\{x_1, x_2, \dots, x_n\}) = \frac{n}{|\Omega|}$. So, $\Pr(E) = \frac{|E|}{|\Omega|}$.

A's Gambling Problem(s)

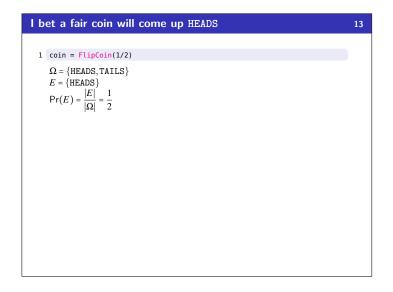
11

One of the TAs has a gambling problem. They make all of the following bets with $\ensuremath{\mathsf{Adam}}$:

12

- I bet a fair coin will come up HEADS.
- I bet a six-sided die will be even.
- \blacksquare I bet if each of us rolls a six-sided die, the sum will be 7.

Let's model each of these with code, determine the events and sample space, and evaluate the probabilities of each.



I bet a six-sided die will be even	14
	_
1 roll = RollDie(6)	
$\Omega = \{1, 2, 3, 4, 5, 6\}$ $E = \{2, 4, 6\}$	
$E = \{2, 4, 6\}$ Pr(E) = $\frac{ E }{ \Omega } = \frac{3}{6} = \frac{1}{2}$	

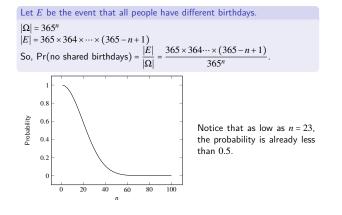
I bet if each of us rolls a six-sided die, the sum will be 7	15							
1 adamRoll = RollDie(6)								
2 taRoll = RollDie(6)								
What is Pr(adamRoll+taRoll=7)?								
$ \Omega = \{ \begin{array}{ccccccccccccccccccccccccccccccccccc$								
$E = \{$ (6,1), (5,2), (4,3), (3,4), (2,5) (1,6) $\}$								
So, $Pr(adamRoll + taRoll = 7) = \frac{ E }{ S } = \frac{6}{36} = \frac{1}{6}$								

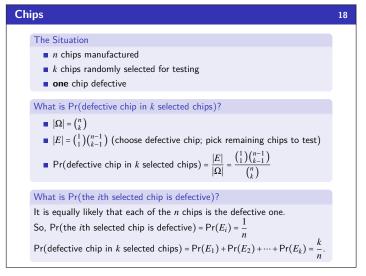
Birthdays	16
What is the probability that nor	e of n people share the same birthday?
<pre>1 person1 = RollDie(1/365) 2 person2 = RollDie(1/365) 3 4 person365 = RollDie(1/365)</pre>	
What assumptions have we implie	citly made with this code?
 Birthdays are equally likely (not actually truebut close enough)
What is the sample space?	
$ \Omega = \{(x_1, x_2, \dots, x_n) : 0 < x_i \le 365$	$ = 365^{n}$
Let E be the event that all peopl	e have different birthdays.
What is <i>E</i> ?	
$ E = 365 \times 364 \times \cdots \times (365 - n + 1)$	

Birthdays

17

What is the probability that none of n people share the same birthday?





Chips	19
The Situation n chips manufactured k chips randomly selected for testing d chips defective 	
What is Pr(at least one defective chip in <i>k</i> selected chips)? Consider Pr(no chip defective in <i>k</i> selected chips) instead. a $ \Omega = {n \choose k}$ b $ E = {n-d \choose k}$ (choose from non-defective chips) b Pr(at least one defective in <i>k</i>) = $1 - \frac{ E }{ \Omega } = 1 - \frac{{n-d \choose k}}{{n \choose k}}$	