Lecture 2



## Foundations of Computing II

CSE 312: Foundations of Computing II

# **Counting in Two Ways**

 Extra practice section in EEB 037 from 3:30pm - 4:30pm on Thursday. You don't need to sign up; just show up. Yes, the problems will be posted on the website.

HW Grading

Adam's Open Door Policy

HW 1 Out



What is Counting in Two Ways?



**Binomial Theorem** 3



## A New Proof Strategy: Counting in Two Ways

#### Definition (Counting in Two Ways)

If we have a set X and natural numbers n,m, then if n = |X| and m = |X|, then n = |X| = m.

Okay, duh, but...

$$|X| = w$$

Definition (Triangle Numbers)

The *n*th Triangle Number,  $\triangle_n = 1 + 2 + \dots + n$ .

Definition (Triangle Numbers)

The *n*th Triangle Number,  $\triangle_n = 1 + 2 + \dots + n$ .

Let's prove that  $n^2 = \triangle_n + \triangle_{n-1}$ .

1

Definition (Triangle Numbers) The *n*th Triangle Number,  $\triangle_n = 1 + 2 + \dots + n$ . Let's prove that  $n^2 = \triangle_n + \triangle_{n-1}$ . Proof 1: Induction We did enough of that in CSE 311.

Definition (Triangle Numbers) The *n*th Triangle Number,  $\triangle_n = 1 + 2 + \dots + n$ . Let's prove that  $n^2 = \triangle_n + \triangle_{n-1}$ . Proof 1: Induction We did enough of that in CSE 311. Proof 2: Counting in Two Ways

Make a square with n dots on each side.

Make a square by combining a triangle of height n and a triangle of height n-1.



#### 2 Examples

Binomial Theorem



Prove that 
$$\binom{n}{k} = \binom{n}{n-k}$$
.

Prove that 
$$\binom{n}{k} = \binom{n}{n-k}$$
.

#### Set

We claim that both sides of this identity count the number of committees of size k we can make out of n possible members.

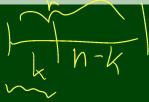
Prove that 
$$\binom{n}{k} = \binom{n}{n-k}$$

#### Set

We claim that both sides of this identity count the number of committees of size k we can make out of n possible members.

#### Way 1: Use the definition

Note that the left side counts this by definition.



Prove that 
$$\binom{n}{k} = \binom{n}{n-k}$$
.

#### Set

We claim that both sides of this identity count the number of committees of size k we can make out of n possible members.

#### Way 1: Use the definition

Note that the left side counts this by definition.

#### Way 2: Be Clever!

The right side chooses n-k people to be excluded from the committee. This leaves behind k to be included.

## **Binomial Coefficients: Demystified**

How many ways are there to arrange n people in a row?

## **Binomial Coefficients: Demystified**

How many ways are there to arrange n people in a row?

Way 1: Use *n*!

Just order them: there are n! ways to do this.

How many ways are there to arrange n people in a row?

#### Way 1: Use n!

Just order them: there are n! ways to do this.

#### Way 2: Use $\binom{n}{k}$

Choose the first k people in the row. Then, order them. Then, order the remaining people.

There are  $\binom{n}{k}$  ways to do the first step, k! ways to do the second step, and (n-k)! ways to do the third step. By the rule of product, there are  $\binom{n}{k}k!(n-k)!$  ways to order n people.

How many ways are there to arrange n people in a row?

#### Way 1: Use n!

Just order them: there are n! ways to do this.

#### Way 2: Use $\binom{n}{k}$

Choose the first k people in the row. Then, order them. Then, order the remaining people.

There are  $\binom{n}{k}$  ways to do the first step, k! ways to do the second step, and (n-k)! ways to do the third step. By the rule of product, there are  $\binom{n}{k}k!(n-k)!$  ways to order n people.

#### The Point...

We've just shown that 
$$n! = \binom{n}{k}k!(n-k)!$$
; that is:  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ 

The first question to answer is what set both sides are counting. If one of the sides is  $\binom{n}{k}$ , we should think...

The first question to answer is what set both sides are counting.
 If one of the sides is 
 <sup>n</sup>
 <sub>k</sub>
 <sub>k</sub>

The first question to answer is what set both sides are counting.
If one of the sides is <sup>n</sup>/<sub>k</sub>, we should think...
Committees of size k from n people.
If one of the sides is 312<sup>k</sup>, we should think...

The first question to answer is what set both sides are counting.

- If one of the sides is  $\binom{n}{k}$ , we should think... Committees of size k from n people.
- If one of the sides is 312<sup>k</sup>, we should think... Strings of length k with 312 possibilities for each character.

The first question to answer is what set both sides are counting.

- If one of the sides is  $\binom{n}{k}$ , we should think... Committees of size k from n people.
- If one of the sides is 312<sup>k</sup>, we should think... Strings of length k with 312 possibilities for each character.
- If one of the sides is n!, we should think...

The first question to answer is what set both sides are counting.
If one of the sides is <sup>n</sup>/<sub>k</sub>, we should think... Committees of size k from n people.
If one of the sides is 312<sup>k</sup>, we should think... Strings of length k with 312 possibilities for each character.
If one of the sides is n!, we should think... Arrangments of n distinct items.

How many ways are there to arrange n people in a circle?

semme : fre N doggies in B FE transforma と  $\left( \begin{array}{c} \\ \end{array} \right)$ 

How many ways are there to arrange n people in a circle?

We can pull the same trick. Temporarily denote this number as  $C_n$ . Let's answer the same question as before, but this time using  $C_n$ :

How many ways are there to arrange n doggies in a row?

How many ways are there to arrange n people in a circle?

We can pull the same trick. Temporarily denote this number as  $C_n$ . Let's answer the same question as before, but this time using  $C_n$ :

How many ways are there to arrange n doggies in a row?

Way 1: Use n!

Just order them: there are n! ways to do this.

How many ways are there to arrange n people in a circle?

We can pull the same trick. Temporarily denote this number as  $C_n$ . Let's answer the same question as before, but this time using  $C_n$ :

How many ways are there to arrange n doggies in a row?

Way 1: Use *n*!

Just order them: there are n! ways to do this.

#### Way 2: Use $C_n$

First, place the doggies in a circle. (There are  $C_n$  ways to do this) Then, split the circle open by choosing a single doggie to lead the line. (There are n ways to do this)

How many ways are there to arrange n people in a circle?

We can pull the same trick. Temporarily denote this number as  $C_n$ . Let's answer the same question as before, but this time using  $C_n$ :

How many ways are there to arrange n doggies in a row?

Way 1: Use *n*!

Just order them: there are n! ways to do this.

#### Way 2: Use $C_n$

First, place the doggies in a circle. (There are  $C_n$  ways to do this) Then, split the circle open by choosing a single doggie to lead the line. (There are n ways to do this)

#### The Point...

We've just shown that 
$$n! = C_n n$$
; that is:  $C_n = \frac{n!}{n} = (n-1)!$ 

Prove

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$
  
by counting in two ways.  
Set: Committee of K doggies chosen  
From  $\int doggies$  chosen  
From  $\int doggies$   
Left: by defin

#### Prove

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

by counting in two ways.

Both Sides Count...

The number of ways to choose a group of k doggies from n doggies.

#### Prove

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

by counting in two ways.

Both Sides Count...

The number of ways to choose a group of k doggies from n doggies.

Way 1: Use  $\binom{n}{k}$ 

Just choose them: there are  $\binom{n}{k}$  ways to do this.

#### Prove

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

by counting in two ways.

Both Sides Count...

The number of ways to choose a group of k doggies from n doggies.

Way 1: Use  $\binom{n}{k}$ 

Just choose them: there are  $\binom{n}{k}$  ways to do this.

#### Way 2: Get Clever!

Partition the choices into two sets: (1) groups without Hopper, (2) groups with Hopper.

There are  $\binom{n-1}{k}$  ways to choose a group that DOES NOT have **Hopper**. There are  $\binom{n-1}{k-1}$  ways to choose a group that DOES have **Hopper**. How many ways are there to re-arrange the letters in the word APPLE? Call this number N.

Both Sides Count...

## **Rearranging Words**

How many ways are there to re-arrange the letters in the word APPLE? Call this number N.

Both Sides Count... The number of ways to rearrange  $AP_1P_2LE$ . check: Saut  $51 \equiv N$ . n

How many ways are there to re-arrange the letters in the word APPLE? Call this number  $N. \label{eq:approx}$ 

Both Sides Count...

The number of ways to rearrange  $AP_1P_2LE$ .

Way 1: Use *n*!

How many ways are there to re-arrange the letters in the word APPLE? Call this number N.

Both Sides Count...

The number of ways to rearrange  $AP_1P_2LE$ .

Way 1: Use n!

Just arrange them: there are n! ways to do this.

How many ways are there to re-arrange the letters in the word APPLE? Call this number N.

Both Sides Count...

The number of ways to rearrange  $AP_1P_2LE$ .

Way 1: Use n!

Just arrange them: there are n! ways to do this.

Way 2: Get Clever!

How many ways are there to re-arrange the letters in the word APPLE? Call this number  $N. \label{eq:approx}$ 

Both Sides Count...

The number of ways to rearrange  $AP_1P_2LE$ .

Way 1: Use n!

Just arrange them: there are n! ways to do this.

#### Way 2: Get Clever!

Arrange the letters of APPLE (there are N ways to do this). Arrange the order of the P's (there are 2! ways to do this).

So,  $n! = N \times 2!$ . So,  $N = \frac{n!}{2!}$