Adam Blank	Lecture 2	Spring 2018
Foundations of Computing II		

Administrivia

- Extra practice section in EEB 037 from 3:30pm - 4:30pm on Thursday. You don't need to sign up; just show up. Yes, the problems will be posted on the website.
- HW Grading
- Adam's Open Door Policy
- HW 1 Out

Triangles and Squares
Definition (Triangle Numbers) The nth Triangle Number, $\Delta_{n}=1+2+\cdots+n$. Let's prove that $n^{2}=\Delta_{n}+\Delta_{n-1}$. Proof 1: Induction We did enough of that in CSE 311. Proof 2: Counting in Two Ways Make a square with n dots on each side. Make a square by com- bining a triangle of height n and a triangle of height $n-1$.

Counting in Two Ways

A New Proof Strategy: Counting in Two Ways

Definition (Counting in Two Ways)
If we have a set X and natural numbers n, m, then if $n=|X|$ and $m=|X|$, then $n=|X|=m$.

Okay, duh, but.

Prove that $\binom{n}{k}=\binom{n}{n-k}$.

Set

We claim that both sides of this identity count the number of committees of size k we can make out of n possible members.

Way 1: Use the definition
Note that the left side counts this by definition.
Way 2: Be Clever!
The right side chooses $n-k$ people to be excluded from the committee. This leaves behind k to be included.

How many ways are there to arrange n people in a row?

Way 1: Use n !

Just order them: there are n ! ways to do this

Way 2: Use $\binom{n}{k}$

Choose the first k people in the row. Then, order them. Then, order the remaining people.
There are $\binom{n}{k}$ ways to do the first step, k ! ways to do the second step, and $(n-k)$! ways to do the third step. By the rule of product, there are $\binom{n}{k} k!(n-k)!$ ways to order n people.

The Point.
We've just shown that $n!=\binom{n}{k} k!(n-k)!$; that is: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
The first question to answer is what set both sides are counting.

- If one of the sides is $\binom{n}{k}$, we should think...

Committees of size k from n people.
■ If one of the sides is 312^{k}, we should think.
Strings of length k with 312 possibilities for each character.

- If one of the sides is $n!$, we should think. .

Arrangments of n distinct items.

And Another. . .

Prove

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

by counting in two ways.

Both Sides Count.

The number of ways to choose a group of k doggies from n doggies.

Way 1: Use $\binom{n}{k}$

Just choose them: there are $\binom{n}{k}$ ways to do this.

Way 2: Get Clever!

Partition the choices into two sets: (1) groups without Hopper, (2) groups with Hopper.
There are $\binom{n-1}{k}$ ways to choose a group that DOES NOT have Hopper.
There are $\binom{n-1}{k-1}$ ways to choose a group that DOES have Hopper.

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

A Specific Case
 $$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Let's prove this combinatorially!

