

Foundations of Computing II

Conditional Probability \& Law of Total Probability

Conditional Probability

Consider the following experiment:
1 diel = RollDie(6)
2 die2 = RollDie(6)

If we already know die1 = 1 , what is $\operatorname{Pr}($ die1 + die2 $=2)$?
$\operatorname{Pr}(\operatorname{die} 1+$ die2 $=2)=$

Conditional Probability

Consider the following experiment:
1 diel = RollDie(6)
2 die2 = RollDie(6)

If we already know die1 = 1 , what is $\operatorname{Pr}($ die1 + die2 $=2)$?
$\operatorname{Pr}($ die $1+$ die2 $=2)=\operatorname{Pr}($ die2 $=1)=\frac{1}{6}$
If we already know die1 + die $2=3$, what is $\operatorname{Pr}($ die1 $=1)=\operatorname{Pr}(E)$?

Consider the following experiment:

```
diel = RollDie(6)
2 die2 = RollDie(6)
```

If we already know die1 = 1 , what is $\operatorname{Pr}($ die1 + die2 $=2)$?
$\operatorname{Pr}($ die $1+\operatorname{die} 2=2)=\operatorname{Pr}($ die2 $=1)=\frac{1}{6}$
If we already know die1 + die $2=3$, what is $\operatorname{Pr}($ die1 $=1)=\operatorname{Pr}(E)$?

$$
\begin{aligned}
& \Omega=\{\quad(1,1), \\
& (1,2) \text {, } \\
& (1,3) \\
& (1,4) \\
& (1,5) \text {, } \\
& (1,6) \text {, } \\
& (2,1) \text {, } \\
& (2,2) \quad(2,3) \\
& (2,4), \quad(2,5) \text {, } \\
& (2,6) \text {, } \\
& (3,1) \text {, } \\
& (3,2) \quad(3,3) \\
& (3,4), \quad(3,5) \\
& (3,6) \text {, } \\
& (4,1), \quad(4,2), \quad(4,3), \quad(4,4), \quad(4,5), \quad(4,6) \text {, } \\
& (5,1), \quad(5,2), \quad(5,3) \quad(5,4), \quad(5,5), \quad(5,6) \text {, } \\
& (6,1), \quad(6,2), \quad(6,3) \quad(6,4), \quad(6,5), \quad(6,6)\} \\
& E=\{\quad(1,1), \quad(1,2), \quad(1,3), \quad(1,4), \quad(1,5), \quad(1,6)\}
\end{aligned}
$$

$\operatorname{Pr}(\operatorname{die} 1=1$ if die1 + die2 $=3)=$

Consider the following experiment:

If we already know die1 = 1 , what is $\operatorname{Pr}($ die1 + die2 $=2)$?
$\operatorname{Pr}(\operatorname{die} 1+\operatorname{die} 2=2)=\operatorname{Pr}(\operatorname{die} 2=1)=\frac{1}{6}$
If we already know die1 + die $2=3$, what is $\operatorname{Pr}($ die1 $=1)=\operatorname{Pr}(E)$?

$$
\begin{aligned}
& \Omega=\{\quad(1,1), \\
& (1,2) \text {, } \\
& (1,3) \\
& (1,4) \\
& (1,5) \text {, } \\
& (1,6) \text {, } \\
& (2,2) \quad(2,3) \\
& (2,4), \quad(2,5) \text {, } \\
& (2,6) \text {, } \\
& (3,1) \text {, } \\
& (3,2) \quad(3,3) \\
& (3,4), \\
& (3,5), \quad(3,6) \text {, } \\
& (4,1), \quad(4,2), \quad(4,3), \quad(4,4), \quad(4,5), \quad(4,6) \text {, } \\
& (5,1), \quad(5,2), \quad(5,3) \quad(5,4), \quad(5,5), \quad(5,6) \text {, } \\
& (6,1), \quad(6,2), \quad(6,3) \quad(6,4), \quad(6,5), \quad(6,6) \quad\} \\
& E=\{\quad(1,1), \quad(1,2), \quad(1,3), \quad(1,4), \quad(1,5), \quad(1,6)\}
\end{aligned}
$$

$\operatorname{Pr}($ die $1=1$ if die $1+$ die $2=3)=\frac{1}{2}$

Definition (Conditional Probability)

We say the $\operatorname{Pr}(A \mid B)$ is "the probability of A given B ", and we can calculate it as:

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

$\operatorname{Pr}(A \mid B)$ "restricts" the sample space to B and asks for $\operatorname{Pr}(A)$ with that information.

Conditional Probability Example with Formulas

A is die1 = $1, B$ is die1 $+\operatorname{die} 2=3$

$$
\begin{array}{llllll}
A=\left\{\begin{array}{llll}
A & (1,1), & (1,2), & (1,3), \\
B & =\{ & (1,4), & (1,5), \\
(1,2), & (2,1) & &
\end{array}\right\}
\end{array}
$$

Way 1: $\operatorname{Pr}($ die1 $=1 \mid$ die1 + die2 $=3)=\frac{|A \cap B|}{|B|}=$

Conditional Probability Example with Formulas

1 diel $=$ RollDie(6)
2 die2 = RollDie(6)
A is die1 = $1, B$ is die $1+\operatorname{die} 2=3$

$$
\begin{array}{llllll}
A=\{ & (1,1), & (1,2), & (1,3), & (1,4), & (1,5), \\
B=\{ & (1,2), & (2,1) & & &
\end{array}
$$

Way 1: $\operatorname{Pr}($ die1 $=1 \mid$ die1 + die2 $=3)=\frac{|A \cap B|}{|B|}=\frac{1}{2}$
Way 2: $\operatorname{Pr}($ die $1=1 \mid$ die $1+$ die $2=3)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=$

Conditional Probability Example with Formulas

1 diel $=$ RollDie(6)
2 die2 = RollDie(6)
A is die1 = $1, B$ is die $1+\operatorname{die} 2=3$

$$
\begin{array}{llllll}
A=\{ & (1,1), & (1,2), & (1,3), & (1,4), & (1,5), \\
B=\{ & (1,2), & (2,1) & & &
\end{array}
$$

Way 1: $\operatorname{Pr}($ die1 $=1 \mid$ die1 + die2 $=3)=\frac{|A \cap B|}{|B|}=\frac{1}{2}$
Way 2: $\operatorname{Pr}($ die1 $=1 \mid$ die $1+$ die2 $=3)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\frac{1}{36}}{\frac{2}{36}}=\frac{1}{2}$

Another Example

Way 1

Way 2

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

1 roll = RollDie(6)

What is $\operatorname{Pr}($ roll $=5 \mid$ roll is odd $) ?$

- $A=\{5\}$
$\square B=\{1,3,5\}$

Another Example

Way 1

Way 2

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

1 roll = RollDie(6)

What is $\operatorname{Pr}($ roll $=5 \mid$ roll is odd $) ?$

- $A=\{5\}$
- $B=\{1,3,5\}$
- $\operatorname{Pr}($ roll $=5 \mid$ roll is odd $)=\frac{|A \cap B|}{|B|}=\frac{1}{3}$
- $\operatorname{Pr}($ roll $=5 \mid$ roll is odd $)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3}$

Another Example

Way 1

Way 2

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Bit string with m 1's and $n 0$'s sent on the network with all arrangements of bits equally likely.
$E=$ first bit received is a 0
$F=k$ of the first r bits received are 0's
What is $\operatorname{Pr}(E \mid F)$?

- $E=$ set of $m+n$ tuples with the first bit 0
a $F=$ set of $m+n$ tuples with $k 0$'s in the first r bits

Way 1

Way 2

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Bit string with m 1's and $n 0$'s sent on the network with all arrangements of bits equally likely.
$E=$ first bit received is a 0
$F=k$ of the first r bits received are 0's
What is $\operatorname{Pr}(E \mid F)$?

- $E=$ set of $m+n$ tuples with the first bit 0
- $F=$ set of $m+n$ tuples with $k 0$'s in the first r bits
$-\operatorname{Pr}(E \mid F)=\frac{|E \cap F|}{|F|}=$

Way 1

Way 2

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Bit string with m 1's and $n 0$'s sent on the network with all arrangements of bits equally likely.
$E=$ first bit received is a 0
$F=k$ of the first r bits received are 0's
What is $\operatorname{Pr}(E \mid F)$?

- $E=$ set of $m+n$ tuples with the first bit 0
- $F=$ set of $m+n$ tuples with $k 0$'s in the first r bits
$=\operatorname{Pr}(E \mid F)=\frac{|E \cap F|}{|F|}=\frac{\binom{r-1}{k-1}\binom{n+m-r}{n-k}}{\binom{r}{k}\left(\begin{array}{c}\binom{+m-r}{n-k}\end{array}\right)}$

Golden Coins

We have three bags with coins: one has two gold coins, one has two silver coins, and the third has one gold coin and one silver coin.

We randomly choose one of the bags, and we randomly select a coin from the bag. It turns out to be gold. What is the probability that the other coin in that bag is gold?

Golden Coins

We have three bags with coins: one has two gold coins, one has two silver coins, and the third has one gold coin and one silver coin.

We randomly choose one of the bags, and we randomly select a coin from the bag. It turns out to be gold. What is the probability that the other coin in that bag is gold?

Let G_{1} be the event that the coin we chose first is gold.

Golden Coins

We have three bags with coins: one has two gold coins, one has two silver coins, and the third has one gold coin and one silver coin.

We randomly choose one of the bags, and we randomly select a coin from the bag. It turns out to be gold. What is the probability that the other coin in that bag is gold?

Let G_{1} be the event that the coin we chose first is gold. Let G_{2} be the event that the second chosen coin is gold.

Golden Coins

We have three bags with coins: one has two gold coins, one has two silver coins, and the third has one gold coin and one silver coin.

We randomly choose one of the bags, and we randomly select a coin from the bag. It turns out to be gold. What is the probability that the other coin in that bag is gold?

Let G_{1} be the event that the coin we chose first is gold. Let G_{2} be the event that the second chosen coin is gold. The problem is asking us to find $\operatorname{Pr}\left(G_{2} \mid G_{1}\right)$:

Golden Coins

We have three bags with coins: one has two gold coins, one has two silver coins, and the third has one gold coin and one silver coin.

We randomly choose one of the bags, and we randomly select a coin from the bag. It turns out to be gold. What is the probability that the other coin in that bag is gold?

Let G_{1} be the event that the coin we chose first is gold. Let G_{2} be the event that the second chosen coin is gold. The problem is asking us to find $\operatorname{Pr}\left(G_{2} \mid G_{1}\right)$:

- $\operatorname{Pr}\left(G_{1}\right)=3 / 6=1 / 2$ (three of the six coins are gold)

Golden Coins

We have three bags with coins: one has two gold coins, one has two silver coins, and the third has one gold coin and one silver coin.

We randomly choose one of the bags, and we randomly select a coin from the bag. It turns out to be gold. What is the probability that the other coin in that bag is gold?

Let G_{1} be the event that the coin we chose first is gold. Let G_{2} be the event that the second chosen coin is gold. The problem is asking us to find $\operatorname{Pr}\left(G_{2} \mid G_{1}\right)$:

- $\operatorname{Pr}\left(G_{1}\right)=3 / 6=1 / 2$ (three of the six coins are gold)
- $\operatorname{Pr}\left(G_{1} \cap G_{2}\right)=1 / 3$ (the coins must be in the gold-gold bag)

Golden Coins

We have three bags with coins: one has two gold coins, one has two silver coins, and the third has one gold coin and one silver coin.

We randomly choose one of the bags, and we randomly select a coin from the bag. It turns out to be gold. What is the probability that the other coin in that bag is gold?

Let G_{1} be the event that the coin we chose first is gold. Let G_{2} be the event that the second chosen coin is gold. The problem is asking us to find $\operatorname{Pr}\left(G_{2} \mid G_{1}\right)$:

- $\operatorname{Pr}\left(G_{1}\right)=3 / 6=1 / 2$ (three of the six coins are gold)
- $\operatorname{Pr}\left(G_{1} \cap G_{2}\right)=1 / 3$ (the coins must be in the gold-gold bag)
- $\operatorname{Pr}\left(G_{2} \mid G_{1}\right)=\frac{\operatorname{Pr}\left(G_{1} \cap G_{2}\right)}{\operatorname{Pr}\left(G_{1}\right)}=\frac{2}{3}$

Product Rule

Definition (Product Rule) $\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\operatorname{Pr}\left(A_{1}\right) \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \operatorname{Pr}\left(A_{3} \mid A_{1} \cap A_{2}\right)$
 $\operatorname{Pr}(A \cap(B \cap C))=$

$$
\begin{aligned}
& \operatorname{pr}(y \mid x)=\frac{\operatorname{Pr}(y \cap x)}{\operatorname{Pr}(x)} \\
& \operatorname{Pr} \operatorname{\operatorname {sin}(x\cap y)}=\operatorname{Pr}(x) \operatorname{Pr}(y \mid x)
\end{aligned}
$$

$$
\operatorname{Pr}(A \cap(B \cap C))=
$$

Definition (Product Rule)

$$
\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\operatorname{Pr}\left(A_{1}\right) \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \operatorname{Pr}\left(A_{3} \mid A_{1} \cap A_{2}\right)
$$

$\operatorname{Pr}(x) \operatorname{Pr}(y \mid x)$

$$
\operatorname{Pr}(A \cap(B \cap C))=\operatorname{Pr}(A \mid B \cap C) \operatorname{Pr}(B \cap C)=\operatorname{Pr}(A \mid B \cap C) \operatorname{Pr}(B \mid C) \operatorname{Pr}(C)
$$

Example

Three cards are drawn from an ordinary 52-card deck without replacement. What is the probability that none of them is a heart?
Let A_{i} be the event that the i th card is no a heart.
We're looking for $\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{3}\right)$.
$\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{3}\right)=$
$\binom{52}{3}$
$\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{2}\right)=\operatorname{Pr}\left(A_{1}\right) \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \operatorname{Pr}\left(A_{3} \mid A_{1} \cap A_{2}\right)$
$=\frac{311}{52} \frac{38}{5 T} \frac{3 \%}{50}$

Definition (Law of Total Probability)

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})
$$

Note that $E \cap F$ and $E \cap \bar{F}$ are disjoint. So:

$$
\begin{aligned}
\operatorname{Pr}((\underline{E \cap F}) \cup(\underline{E \cap \bar{F})}) & =\operatorname{Pr}(E \cap F) \operatorname{Pr}(E \cap \bar{F}) \\
\operatorname{Pr}(E) & =\operatorname{Pr}(E \cap F)+\operatorname{Pr}(E \cap \bar{F}) \\
& =\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})
\end{aligned}
$$

Definition (Law of Total Probability)

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})
$$

Note that $E \cap F$ and $E \cap \bar{F}$ are disjoint. So:

$$
\begin{aligned}
\operatorname{Pr}((E \cap F) \cup(E \cap \bar{F})) & =\operatorname{Pr}(E \cap F)+\operatorname{Pr}(E \cap \bar{F}) \\
\operatorname{Pr}(E) & =\operatorname{Pr}(E \cap F)+\operatorname{Pr}(E \cap \bar{F}) \\
& =\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})
\end{aligned}
$$

Definition (General Law of Total Probability)

$$
\operatorname{Pr}(A)=\sum_{i=0}^{n} \operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)
$$

Another Experiment

Consider the following experiment:

coin $=$ FlipCoin $(1 / 2)$
if coin =- HEADS.
die = Roll die
else: \qquad

$$
\text { What is } \operatorname{Pr}(\text { die }=1) ?
$$

$$
A=\left(d^{\prime}, e=1\right)
$$

$$
\begin{aligned}
& A=2.2 \\
& B=(\cos \text { is } H \text { tens }
\end{aligned}
$$

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)
$$

Consider the following experiment:

```
1 coin = FlipCoin(1/2)
2 if coin == HEADS:
3 die = RollDie(6)
else:
5
```

What is $\operatorname{Pr}(\mathrm{die}=1)$?

$$
\begin{aligned}
\operatorname{Pr}(\text { die }=1) & =\operatorname{Pr}(\text { die }=1 \mid \text { coin }=\text { HEADS }) * \operatorname{Pr}(\text { coin }=\text { HEADS }) \\
& +\operatorname{Pr}(\text { die }=1 \mid \text { coin }=\text { TAILS }) * \operatorname{Pr}(\text { coin }=\text { TAILS }) \\
& =\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)+\left(\frac{1}{6}\right)\left(\frac{1}{2}\right)
\end{aligned}
$$

Gambler's Ruin

A has i dollars; B has $N-i$
Flip a coin. If HEADS, A wins $\$ 1$ from B. If TAILS, B wins $\$ 1$ from A. Repeat until A or B has all N dollars.

```
A = i
B = N-i
while A < N and B < N:
    result = FlipCoin(1/2)
    A += result == HEADS ? 1 : -1;
    B += result == HEADS ? -1 : 1;
```

Let E_{i} be the event " A wins starting with $\$ i$ ". What is $\operatorname{Pr}\left(E_{i}\right)$?

Let B be A wins coin dip (HELADS)
$\operatorname{Pr}\left(E_{i}\right)=\operatorname{Pr}\left(E_{i *} \mid H\right) \operatorname{Pr}(*)+\operatorname{Pr}\left(\bar{E}_{i+1} \mid \vec{H}\right) \operatorname{Pr}(\bar{H})$
A has i dollars; B has $N-i$
Flip a coin. If HEADS, A wins $\$ 1$ from B. If TAILS, B wins $\$ 1$ from A. Repeat until A or B has all N dollars.

```
A = i
B = N - i
while A < N and B < N:
    result = FlipCoin(1/2)
    A += result == HEADS ? 1 : -1;
    B += result == HEADS ? -1 : 1;
```

Let E_{i} be the event " A wins starting with $\$ i$ ". What is $\operatorname{Pr}\left(E_{i}\right)$?

$$
\begin{aligned}
\operatorname{Pr}\left(E_{i}\right) & =\operatorname{Pr}\left(E_{i} \mid H\right) \operatorname{Pr}(H)+\operatorname{Pr}\left(E_{i} \mid T\right) \operatorname{Pr}(T) \\
& =\frac{1}{2}\left(\operatorname{Pr}\left(E_{i} \mid H\right)+\operatorname{Pr}\left(E_{i} \mid T\right)\right) \\
& =\frac{1}{2}\left(\operatorname{Pr}\left(E_{i+1}\right)+\operatorname{Pr}\left(E_{i-1}\right)\right)
\end{aligned}
$$

So, $\operatorname{Pr}\left(E_{i+1}\right)=2 \operatorname{Pr}\left(E_{i}\right)-\operatorname{Pr}\left(E_{i-1}\right)$.

Gambler's Ruin

```
A = i
B = N - i
while A<N and B < N:
    result = FlipCoin(1/2)
    A += result == HEADS ? 1 : -1;
    B += result == HEADS ? -1 : 1;
```

Let E_{i} be the event " A wins starting with $\$ i$ ". So, $\operatorname{Pr}\left(E_{i+1}\right)=2 \operatorname{Pr}\left(E_{i}\right)-\operatorname{Pr}\left(E_{i-1}\right)$.

```
A = i
B = N - i
while A<N and B < N:
    result = FlipCoin(1/2)
    A += result == HEADS ? 1 : -1;
    B += result == HEADS ? -1 : 1;
```

Let E_{i} be the event " A wins starting with $\$ i$ ".
So, $\operatorname{Pr}\left(E_{i+1}\right)=2 \operatorname{Pr}\left(E_{i}\right)-\operatorname{Pr}\left(E_{i-1}\right)$.

$$
\begin{aligned}
p_{i+1} & =2 p_{i}-p_{i-1} \\
p_{2} & =2 p_{1}-p_{0}=2 p_{1} \\
p_{3} & =2 p_{2}-p_{1}=2 \times 2 p_{1}-1 \times p_{1}=3 p_{1} \\
& \cdots \\
p_{i} & =2 p_{i-1}-p_{i-2}=2(i-1) p_{1}-(i-2) p_{1}=i p_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
1 \text { while FlipCoin(1/2) } \neq \text { HEADS: } \\
2 \text { print "Hello!" }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(1+{ }^{\frac{1}{2}} \operatorname{Pr} \text { (Malts) }\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { while FlipCoin }(1 / 2) \neq \text { HEADS: } \\
& 2 \text { print "Hello!" }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}(\text { halt }) & =\operatorname{Pr}(\text { halt } \mid \text { flip } i=\text { HEADS }) \operatorname{Pr}(f l i p ~ i=\text { HEADS }) \\
& +\operatorname{Pr}(\text { halt } \mid \text { flip } i=\text { TAILS }) \operatorname{Pr}(f l i p ~ i=\text { TAILS }) \\
& =\operatorname{Pr}(\text { halt })\left(\frac{1}{2}\right)+1\left(\frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\operatorname{Pr}(\text { halt })}{2}=\frac{1}{2} \\
& \operatorname{Pr}(\text { halt })=1
\end{aligned}
$$

