

Foundations of Computing II

CSE 312: Foundations of Computing II

Counting in Two Ways

Administrivia

Extra practice section in EEB 037 from 3:30pm - 4:30pm on Thursday. You don't need to sign up; just show up. Yes, the problems will be posted on the website.

HW Grading

- Adam's Open Door Policy
- HW 1 Out

Outline

\square What is Counting in Two Ways?
2. Examples

3 Binomial Theorem

A New Proof Strategy: Counting in Two Ways

Definition (Counting in Two Ways)

If we have a set X and natural numbers n, m, then if $n=|X|$ and $m=|X|$, then $n=|X|=m$.

Okay, duh, but. . .

Definition (Triangle Numbers)

The nth Triangle Number, $\triangle_{n}=1+2+\cdots+n$.
Let's prove that $n^{2}=\triangle_{n}+\triangle_{n-1}$.
Proof 1: Induction
We did enough of that in CSE 311.

Proof 2: Counting in Two Ways

Make a square with n dots on each side.

Make a square by combining a triangle of height n and a triangle of height $n-1$.

Outline

\square What is Counting in Two Ways?

2 Examples

3 Binomial Theorem

Prove that $\binom{n}{k}=\binom{n}{n-k}$.

Set
We claim that both sides of this identity count the number of committees of size k we can make out of n possible members.

Way 1: Use the definition
Note that the left side counts this by definition.

Way 2: Be Clever!

The right side chooses $n-k$ people to be excluded from the committee. This leaves behind k to be included.

How many ways are there to arrange n people in a row?

Way 1: Use n !

Just order them: there are n ! ways to do this.

Way 2: Use $\binom{n}{k}$

Choose the first k people in the row. Then, order them. Then, order the remaining people.
There are $\binom{n}{k}$ ways to do the first step, k ! ways to do the second step, and $(n-k)$! ways to do the third step. By the rule of product, there are $\binom{n}{k} k!(n-k)$! ways to order n people.

The Point. . .

$$
\text { We've just shown that } n!=\binom{n}{k} k!(n-k)!; \text { that is: }\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

The first question to answer is what set both sides are counting.

- If one of the sides is $\binom{n}{k}$, we should think. .

Committees of size k from n people.

- If one of the sides is 312^{k}, we should think...

Strings of length k with 312 possibilities for each character.

- If one of the sides is $n!$, we should think. .

Arrangments of n distinct items.

Circles

How many ways are there to arrange n people in a circle?
We can pull the same trick. Temporarily denote this number as C_{n}. Let's answer the same question as before, but this time using C_{n} :

How many ways are there to arrange n doggies in a row?

Way 1: Use n !

Just order them: there are n ! ways to do this.

Way 2: Use C_{n}

First, place the doggies in a circle. (There are C_{n} ways to do this) Then, split the circle open by choosing a single doggie to lead the line.
(There are n ways to do this)
The Point. . .

$$
\text { We've just shown that } n!=C_{n} n \text {; that is: } C_{n}=\frac{n!}{n}=(n-1)!
$$

And Another. . .
Prove

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

by counting in two ways.
Both Sides Count. . .
The number of ways to choose a group of k doggies from n doggies.
Way 1: Use $\binom{n}{k}$
Just choose them: there are $\binom{n}{k}$ ways to do this.

Way 2: Get Clever!

Partition the choices into two sets: (1) groups without Hopper, (2) groups with Hopper.
There are $\binom{n-1}{k}$ ways to choose a group that DOES NOT have Hopper.
There are $\binom{n-1}{k-1}$ ways to choose a group that DOES have Hopper.

How many ways are there to re-arrange the letters in the word APPLE? Call this number N.

Both Sides Count. . .
The number of ways to rearrange $A P_{1} P_{2} L E$.

Way 1: Use n !

Just arrange them: there are n ! ways to do this.

Way 2: Get Clever!

Arrange the letters of APPLE (there are N ways to do this). Arrange the order of the P's (there are 2 ! ways to do this).

So, $n!=N \times 2$!. So, $N=\frac{n!}{2!}$

Outline

\square What is Counting in Two Ways?
2. Examples

3 Binomial Theorem

Binomial Theorem?

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

A Specific Case

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Let's prove this combinatorially!

Binomial Theorem?

A Specific Case

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Proof Sketch.
Set: Binary strings of length n.
Left: By definition.
Right: Partition on how many bits are 0 .

Even Subsets

Even Subsets

$$
\sum_{k \geq 0}\binom{n}{2 k}=2^{n-1}
$$

Proof Sketch.
Set: Even subsets of $[n]$.
Left: Partition on how many elements are in the set.
Right: Decide whether i is in the set or not up to n - 1 -then, at that point the set we chose is either even or odd. If it's even, we can't include the last element; if it's odd, we must include the last element.

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Proof Sketch.

Set: Consider x odd numbers and y even numbers. We line up n numbers (with replacement!) in a row.
Left: For each spot in the row, choose any number.
Right: Partition on how many odd numbers are in the row (k). There are n spots these k numbers could go; choose k of them. Then, determine which k odd numbers are in the row and which $n-k$ even numbers are in the row.

