

Foundations of Computing II

CSE 312: Foundations of Computing II

Counting in Two Ways (A second time)

Administrivia

Extra practice section in EEB 037 from 3:30pm - 4:30pm on Thursday. You don't need to sign up; just show up. Yes, the problems will be posted on the website.

HW Grading

- Adam's Open Door Policy
- HW 1 Out

Outline

\square What is Counting in Two Ways?
2. Examples

3 Binomial Theorem

Binomial Theorem?

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Binomial Theorem?

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

A Specific Case

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Binomial Theorem?

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

A Specific Case

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Let's prove this combinatorially!

A Specific Case

Proof Sketch. $\quad 2^{n}=\sum_{k=1}^{n}\binom{n}{k}$

$$
\begin{aligned}
& \text { Set: Binary strings of length } n \\
& \text { Partition on the \# of I's }
\end{aligned}
$$

Binomial Theorem?

A Specific Case

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Proof Sketch.
Set: Binary strings of length n.
Left:

Binomial Theorem?

A Specific Case

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Proof Sketch.
Set: Binary strings of length n.
Left: By definition.
Right:

Binomial Theorem?

A Specific Case

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Proof Sketch.
Set: Binary strings of length n.
Left: By definition.
Right: Partition on how many bits are 0 .

Even Subsets

Even Subsets

$$
\sum_{k \geq 0}\binom{n}{2 k}=2^{n-1}
$$

Proof Sketch.
Set:

$$
[n]=\{1,2, \ldots, n\}
$$

Even Subsets

Even Subsets

$$
\sum_{k \geq 0}\binom{n}{2 k}==2^{n-1}
$$

Proof Sketch.
Set: Even subsets of $[n]$.
Left:

Even Subsets

Even Subsets

$$
\sum_{k \geq 0}\binom{n}{2 k}=2^{n-1}
$$

Proof Sketch.
Set: Even subsets of $[n]$.
Left: Partition on how many elements are in the set. Right:

Even Subsets

Even Subsets

$$
\sum_{k \geq 0}^{\infty}\binom{n}{2 k}=2^{n-1} \cdot 1
$$

Proof Sketch.
Set: Even subsets of $[n]$.
Left: Partition on how many elements are in the set.
Right: Decide whether i is in the set or not up to $n-1$-then, at that point the set we chose is either even or odd. If it's even, we can't include the last element; if it's odd, we must include the last element.

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Proof Sketch.

Set:

The Real Deal

Definition (Binomial Theorem)

$$
\begin{aligned}
&(x+y)^{n}=\sum_{k=1}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& \text { \# of od H'S }
\end{aligned}
$$

Set: Consider x odd numbers and y even numbers. We line up n numbers (with replacement!) in a row.
Left:

$$
\binom{n}{k}=\binom{n}{n-k}
$$

The Real Deal

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Proof Sketch.

Set: Consider x odd numbers and y even numbers. We line up n numbers (with replacement!) in a row.
Left: For each spot in the row, choose any number. Right:

Definition (Binomial Theorem)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Proof Sketch.

Set: Consider x odd numbers and y even numbers. We line up n numbers (with replacement!) in a row.
Left: For each spot in the row, choose any number.
Right: Partition on how many odd numbers are in the row (k). There are n spots these k numbers could go; choose k of them. Then, determine which k odd numbers are in the row and which $n-k$ even numbers are in the row.

