

Foundations of Computing II

Bayes' Theorem

$$
\begin{aligned}
P(A \mid B) & =\frac{\operatorname{P(A\cap B)}}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(B \cap A)}{\operatorname{Pr}(B)} \\
\operatorname{Pr}(B \cap A) & =\operatorname{Pr}(B) \operatorname{Pr}(A \mid B) \\
& =\operatorname{Pr}(A) \operatorname{Pr}(B \mid A)
\end{aligned}
$$

Definition (Bayes' Theorem)
$\operatorname{Pr}(F \mid E)=\frac{\operatorname{Pr}(F \cap E)}{\operatorname{Pr}(E)}=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(E)}=\frac{\operatorname{Pr}(E \mid F) \operatorname{Pr}(F)}{\operatorname{Pr}(E)}$

This allows us to use $\operatorname{Pr}(E \mid F)$ to calculate $\operatorname{Pr}(F \mid E)$ which turns out to be useful in a variety of applications.
In particular, it allows us swap $\operatorname{Pr}($ model \mid data $)$ for $\operatorname{Pr}($ data \mid model $)$. It also allows us to "update" our beliefs based on new evidence.

Example

- 60% of email is spam
- 90% of spam has a forged header
- 20\%) of non-spam has a forged header

What is $\operatorname{Pr}($ spam | forged header)? What happens as we vary how much spam there is?
Let S be the event "the email is spam".
Let F be the event "there is a forged header".

$$
\begin{aligned}
& \operatorname{Pr}(S \mid F)=\frac{\operatorname{Pr}(S \cap F)}{\operatorname{Pr}(F)}=\frac{\operatorname{Pr}(F \mid S) \operatorname{Pr}(S)}{\operatorname{Pr}(F)} \\
& \operatorname{Pr}(F)=\frac{\operatorname{Pr}(F \mid S \operatorname{Pr}(5)}{(0.9)(0.6)}+\operatorname{Pr}(F \mid S) \operatorname{Pr}(S) \\
& (0.2)(0.4)
\end{aligned}
$$

Example

- 60% of email is spam
- 90% of spam has a forged header
- 20% of non-spam has a forged header

What is Pr (spam | forged header)? What happens as we vary how much spam there is?

Let S be the event "the email is spam".
Let F be the event "there is a forged header".

$$
\begin{aligned}
\operatorname{Pr}(S \mid F) & =\frac{\operatorname{Pr}(S \cap F)}{\operatorname{Pr}(F)}=\frac{\operatorname{Pr}(F \mid S) \operatorname{Pr}(S)}{\operatorname{Pr}(F)}=\frac{(0.9)(0.6)}{\operatorname{Pr}(F)} \\
& =\frac{(0.9)(0.6)}{\operatorname{Pr}(F \mid S) \operatorname{Pr}(S)+\operatorname{Pr}(F \mid \bar{S}) \operatorname{Pr}(\bar{S})} \\
& =\frac{(0.9)(0.6)}{(0.9)(0.6)+(0.2)(0.4)} \\
& \approx 0.871
\end{aligned}
$$

Example

- 60% of email is spam
- 90% of spam has a forged header
- 20% of non-spam has a forged header

What is Pr (spam | forged header)? What happens as we vary how much spam there is?

Example

- 60% of email is spam
- 10% of spam has the word "Viagra"
- 1% of non-spam has the word "Viagra"

What is Pr (spam \mid viagra) ?
Let V be the event "message contains the word 'Viagra' "
Let S be the event "message is spam"

Example

- 60% of email is spam
- 10% of spam has the word "Viagra"
- 1% of non-spam has the word "Viagra"

What is $\operatorname{Pr}($ spam | viagra) ?
Let V be the event "message contains the word 'Viagra' "
Let S be the event "message is spam"

Example

- 60% of email is spam
- 10% of spam has the word "Viagra"
- 1% of non-spam has the word "Viagra"

What is $\operatorname{Pr}($ spam | viagra)?
Let V be the event "message contains the word 'Viagra' "
Let S be the event "message is spam"

$$
\begin{aligned}
\operatorname{Pr}(S \mid V) & =\frac{\operatorname{Pr}(V \mid S) \operatorname{Pr}(S)}{\operatorname{Pr}(V \mid S) \operatorname{Pr}(S)+\operatorname{Pr}(V \mid \bar{S}) \operatorname{Pr}(\bar{S})} \\
& =\frac{(0.1)(0.6)}{(0.1)(0.6)+(0.01)(0.4)} \\
& \approx 0.9375
\end{aligned}
$$

Children

Example

- Child is born with (A, a) gene pair
- Mother has (A, A) gene pair
- Two possible fathers: $M_{1}=(a, a)$ and $M_{2}=(a, A)$

What is $\operatorname{Pr}\left(M_{1}\right.$ is the father \mid child born with $\left.\left.(A, a)\right)\right)$?
Let $A a$ be the event "child born with (A, a) ".
Let F_{1} be the event " M_{1} is the father".
Let F_{2} be the event " M_{2} is the father".
Say $\operatorname{Pr}\left(F_{1}\right)=p$ and $\operatorname{Pr}\left(F_{2}\right)=1-p$

Example

- Child is born with (A, a) gene pair
- Mother has (A, A) gene pair
- Two possible fathers: $M_{1}=(a, a)$ and $M_{2}=(a, A)$

What is $\operatorname{Pr}\left(M_{1}\right.$ is the father \mid child born with $\left.\left.(A, a)\right)\right)$?
Let $A a$ be the event "child born with (A, a) ".
Let F_{1} be the event " M_{1} is the father".
Let F_{2} be the event " M_{2} is the father".
Say $\operatorname{Pr}\left(F_{1}\right)=p$ and $\operatorname{Pr}\left(F_{2}\right)=1-p$

$$
\begin{aligned}
\operatorname{Pr}\left(F_{1} \mid A a\right) & =\frac{\operatorname{Pr}\left(A a \mid F_{1}\right) \operatorname{Pr}\left(F_{1}\right)}{\operatorname{Pr}\left(A a \mid F_{1}\right) \operatorname{Pr}\left(F_{1}\right)+\operatorname{Pr}\left(A a \mid \overline{F_{1}}\right) \operatorname{Pr}\left(\overline{F_{1}}\right)} \\
& =\frac{(1)(p)}{(1)(p)+(0.5)(1-p)} \\
& =\frac{2 p}{1+p}
\end{aligned}
$$

Example

- An HIV test's "false negative" rate (negative when present) is 2% and its "false positive" (positive when not present) rate is 1%
- 0.5% of the population has HIV

Let P be the event " X tests positive for HIV".
Let H be the event " X has HIV".
What is $\operatorname{Pr}(H \mid P)$?

Example

- An HIV test's "false negative" rate (negative when present) is 2% and its "false positive" (positive when not present) rate is 1%
- 0.5% of the population has HIV

Let P be the event " X tests positive for HIV".
Let H be the event " X has HIV".
What is $\operatorname{Pr}(H \mid P)$?

$$
\begin{aligned}
\operatorname{Pr}(H \mid P) & =\frac{\operatorname{Pr}(P \mid H) \operatorname{Pr}(H)}{\operatorname{Pr}(P \mid H) \operatorname{Pr}(H)+\operatorname{Pr}(P \mid \bar{H}) \operatorname{Pr}(\bar{H})} \\
& =\frac{(0.98)(0.005)}{(0.98)(0.005)+(0.01)(0.995)} \\
& \approx 0.330
\end{aligned}
$$

HIV Test 2

Example

- An HIV test's "false negative" rate (negative when present) is 2% and its "false positive" (positive when not present) rate is 1%
- 0.5% of the population has HIV

Let P be the event " X tests positive for HIV".
Let H be the event " X has HIV". What is $\operatorname{Pr}(H \mid \bar{P})$?

Example

- An HIV test's "false negative" rate (negative when present) is 2% and its "false positive" (positive when not present) rate is 1%
- 0.5% of the population has HIV

Let P be the event " X tests positive for HIV".
Let H be the event " X has HIV". What is $\operatorname{Pr}(H \mid \bar{P})$?

$$
\begin{aligned}
\operatorname{Pr}(H \mid \bar{P}) & =\frac{\operatorname{Pr}(\bar{P} \mid H) \operatorname{Pr}(H)}{\operatorname{Pr}(\bar{P} \mid H) \operatorname{Pr}(H)+\operatorname{Pr}(\bar{P} \mid \bar{H}) \operatorname{Pr}(\bar{H})} \\
& =\frac{(0.02)(0.005)}{(0.02)(0.005)+(0.99)(0.995)} \\
& \approx 0.0001
\end{aligned}
$$

