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A random variable is a numeric function of the outcome of an 
experiment, not the outcome itself.  
Ex.

Let H be the number of Heads when 20 coins are tossed
Let T be the total of 2 dice rolls
Let X be the number of coin tosses needed to see 1st head

Note: even if the underlying experiment has “equally likely 
outcomes,” the associated random variable may not 

Outcome X = #H P(X)
TT 0 P(X=0) = 1/4
TH 1

 P(X=1) = 1/2
HT 1
HH 2 P(X=2) = 1/4

}
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20 balls numbered 1, 2, ..., 20
Draw a subset of size 3 at random.
Let X = the maximum of the numbers on those 3 balls

What is P(X ≥ 17) 

numbered balls
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numbered balls
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first head
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Flip a (biased) coin (probability p of Heads) repeatedly until 
1st head observed
What is the sample space?

How many flips?  Let X be that number.
P(X=1) =     
P(X=2) =   
P(X=3) =
…
P(X=i)



first head
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Flip a (biased) coin repeatedly until 1st head observed
How many flips?  Let X be that number.

P(X=1) = P(H)     = p    
P(X=2) = P(TH)   = (1-p)p 
P(X=3) = P(TTH) = (1-p)2p
...
P(X=i) = P(Ti-1H) = (1-p)i-1p

memorize me!



A discrete random variable is one taking on a countable 
number of possible values.
Ex:

X = sum of 3 dice,   3 ≤ X ≤ 18,  X ∈ N
Y = position of 1st head in seq of coin flips,   1 ≤ Y,  Y ∈ N
Z = largest prime factor of (1+Y),    Z ∈ {2, 3, 5, 7, 11, ...}

probability mass functions
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A discrete random variable is one taking on a countable 
number of possible values.
Ex:

X = sum of 3 dice,   3 ≤ X ≤ 18,  X ∈ N

Definition: If X is a discrete random variable taking on 
values from a countable set T ⊆ R, then

is called the probability mass function.  Note:

probability mass functions
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X

X



pmfs

Let      be the number of heads in n independent coin tosses, 
each with probability p of heads.
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X

pX(x) = Pr(X = k)



Let X be the number of heads observed in n coin flips

Probability mass function (p = ½):
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cumulative distribution function
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Prob   outcome     X
===============
1/6         123          3
1/6         132          1 
1/6         213          1
1/6         231          0
1/6         312          0
1/6         321          1

The cumulative distribution function for a random variable X is the 
function F: R →[0,1] defined by 
                        F(a) = P[X≤a]

Ex: 3 students; homework returned according to random 
permutation. 

X is number of homeworks returned to their correct homework.

What is probability mass function? 
Cumulative distribution function?



The cumulative distribution function for a random variable X is 
the function F: R →[0,1] defined by 
                        F(a) = P[X≤a]

Ex: if X has probability mass function given by:

cdf
pmf

cumulative distribution function

!12NB: for discrete random variables, be careful about  “≤” vs “<”



expectation
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For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

For the equally-likely outcomes case, this is just the average of the 
possible random values of X

For unequally-likely outcomes, it is again the average of the possible 
random values of X, weighted by their respective probabilities

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6

expectation
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average of random values, weighted 
by their respective probabilities



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

For the equally-likely outcomes case, this is just the average of the 
possible random values of X

For unequally-likely outcomes, it is again the average of the possible 
random values of X, weighted by their respective probabilities

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)

 

expectation

!15

average of random values, weighted 
by their respective probabilities



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)

 

expectation

!16

average of random values, weighted 
by their respective probabilities



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

For the equally-likely outcomes case, this is just the average of the 
possible random values of X

For unequally-likely outcomes, it is again the average of the possible 
random values of X, weighted by their respective probabilities

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)

  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0

expectation
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For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Another view:  A 2-person gambling game.  If X is how much you 
win playing the game once, how much would you expect to win, on 
average, per game, when repeatedly playing?

expectation
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For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Another view:  A 2-person gambling game.  If X is how much you 
win playing the game once, how much would you expect to win, on 
average, per game, when repeatedly playing?

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6
If you win X dollars for that roll, how much do you expect to win?

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)
  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0
“a fair game”: in repeated play you expect to win as much as you 
lose.  Long term net gain/loss = 0.

expectation
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average of random values, weighted 
by their respective probabilities



Let X be the number of flips up to & including 1st head 
observed in repeated flips of a biased coin (with probability 
p of coming up heads).  If I pay you $1 per flip, how much 
money would you expect to make?

!20

first head

memorize me!



Let X be the number of flips up to & including 1st head 
observed in repeated flips of a biased coin.  If I pay you $1 
per flip, how much money would you expect to make?

A calculus trick:

So (*) becomes:

E.g.:
p=1/2;   on average head every   2nd flip
p=1/10; on average, head every 10th flip.

P (H) = p; P (T ) = 1� p = q

p(i) = pq
i�1

E[X] =
P

i�1 ip(i) =
P

i�1 ipq
i�1 = p

P
i�1 iq

i�1 (⇤)
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first head

How much 
would you 
pay to play?

dy0/dy = 0

E[X] = p
X

i�1

iqi�1 =
p

(1� q)2
=

p

p2
=

1

p

← PMF



Let X be the number 
of heads observed in 
n repeated flips of a 
biased coin.  If I pay 
you $1 per head, how 
much money would 
you expect to make? 

E.g.:
p=1/2
 
p=1/10
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Let X be the number 
of heads observed in 
n repeated flips of a 
biased coin.  If I pay 
you $1 per head, how 
much money would 
you expect to make? 

E.g.:
p=1/2;   on average,  
            n/2 heads   
p=1/10; on average,  
            n/10 heads

!23

how many heads



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Another view: 

expectation

!24



Calculating E[g(X)]:                                          E[X] = Σx xp(x)

Y=g(X) is a new r.v.  Calculate P[Y=j], then apply defn:

  X = number of people who get their homework back                  

   Y = g(X) = X2 mod 2

expectation of  a function of  a random variable
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Prob   outcome     X
===============
1/6         123          3
1/6         132          1 
1/6         213          1
1/6         231          0
1/6         312          0
1/6         321          1



Calculating E[g(X)]:
Y=g(X) is a new r.v.  Calculate P[Y=j], then apply defn:

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

expectation of  a function of  a random variable
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j q(j) = P[Y = j] j•q(j)-

0 4/36+3/36 = 7/36 0/36-

1 5/36+2/36 = 7/36 7/36-

2 1/36+6/36+1/36 = 8/36 16/36-

3 2/36+5/36 = 7/36 21/36-

4 3/36+4/36 = 7/36 28/36-

72/36-

i p(i) = P[X=i] i•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 20/36

6 5/36 30/36

7 6/36 42/36

8 5/36 40/36

9 4/36 36/36

10 3/36 30/36

11 2/36 22/36

12 1/36 12/36

252/36E[X] = Σi ip(i) = 252/36   = 7

E[Y] = Σj jq(j) =  72/36  = 2

Way
 1



Calculating E[g(X)]:  Another way – add in a different order, 
using P[X=...] instead of calculating P[Y=...]

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

expectation of  a function of  a random variable
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j q(j) = P[Y = j] j•q(j)-

0 4/36+3/36 = 7/36 0/36-

1 5/36+2/36 = 7/36 7/36-

2 1/36+6/36+1/36 = 8/36 16/36-

3 2/36+5/36 = 7/36 21/36-

4 3/36+4/36 = 7/36 28/36-

72/36-

i p(i) = P[X=i] g(i)•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 0/36

6 5/36 5/36

7 6/36 12/36

8 5/36 15/36

9 4/36 16/36

10 3/36 0/36

11 2/36 2/36

12 1/36 2/36

72/36E[g(X)] = Σi g(i)p(i) =    252/3 = 2

E[Y] = Σj jq(j) =  72/36  = 2

Way
 2



Above example is not a fluke.

Theorem: if Y = g(X), then E[Y] = Σi g(xi)p(xi) , where 
  xi, i = 1, 2, ... are all possible values of X.
Proof: Let  yj, j = 1, 2, ... be all possible values of  Y.

expectation of  a function of  a random variable
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Note that Sj = { xi | g(xi)=yj } is a 
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Note that Sj = { xi | g(xi)=yj } is a 
partition of the domain of g.

BT pg.84-85
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properties of  expectation
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A & B each bet $1, then flip 2 coins:

Let X be A’s net gain: +1, 0, -1, resp.:

What is E[X]?

E[X]  = 1•1/4 + 0•1/2 + (-1)•1/4  =  0

What is E[X2]?

E[X2] = 12•1/4 + 02•1/2 + (-1)2•1/4 = 1/2

HH A wins $2
HT Each takes 

back $1TH
TT B wins $2

P(X = +1) = 1/4
P(X = 0) = 1/2
P(X = -1) = 1/4

Big Deal Note:
 E[X2] ≠ E[X]2


