random variables

т н Т н т Т Т н let X = index of -

A *random variable* is a *numeric function* of the outcome of an experiment, not the outcome itself.

Ex.

Pr(•)

Let H be the *number* of Heads when 20 coins are tossed

 $X: \mathcal{L} \longrightarrow \mathbb{R}$

Let *T* be the *total* of 2 dice rolls

Let X be the *number* of coin tosses needed to see I^{st} head

Note: even if the underlying experiment has "equally likely outcomes," the associated random variable *may not*

	Outcome	X = #H	P(X)		
	TT	0	P(X=0) = 1/4		
	TH	I	P(X=1) = 1/2		
	HT	I		$ X\rangle \rangle$	
	HH	2	P(X=2) = 1/4	V	
$(X=\alpha) = Pr(\{w \mid X(w)=\alpha\})^2$					

numbered balls

20 balls numbered 1, 2, ..., 20

Draw a subset of size 3 at random.

Let X = the maximum of the numbers on those 3 balls What is $P(X \ge 17)$

/

20 balls numbered 1, 2, ..., 20

Draw a subset of size 3 at random.

Let X = the maximum of the numbers on those 3 balls What is $P(X \ge 17)$

 $P(X = 20) = {\binom{19}{2}} / {\binom{20}{3}} = \frac{3}{20} = 0.150$ $P(X = 19) = {\binom{18}{2}} / {\binom{20}{3}} = \frac{18 \cdot 17/2!}{20 \cdot 19 \cdot 18/3!} \approx 0.134$ \vdots

 $\sum_{i=17}^{20} P(X=i) \approx 0.508$

 $P(X \ge 17) = 1 - P(X < 17) = 1 - {\binom{16}{3}} / {\binom{20}{3}} \approx 0.508$

Flip a (biased) coin (probability p of Heads) repeatedly until Ist head observed

What is the sample space?

How many flips? Let X be that number.

```
P(X=1) =
P(X=2) =
P(X=3) =
```

• • •

P(X=i)

Flip a (biased) coin repeatedly until 1st head observed How many flips? Let X be that number.

$$P(X=I) = P(H) = p$$

 $P(X=2) = P(TH) = (I-p)p$
 $P(X=3) = P(TTH) = (I-p)^2p$

 $P(X=i) = P(T^{i-1}H) = (1-p)^{i-1}p$

...

A *discrete* random variable is one taking on a *countable* number of possible values.

Ex:

X = sum of 3 dice, $3 \le X \le 18$, $X \in N$

 $Y = position of I^{st}$ head in seq of coin flips, $I \leq Y, Y \in N$

Z = largest prime factor of (I+Y), $Z \in \{2, 3, 5, 7, 11, ...\}$

A *discrete* random variable is one taking on a *countable* number of possible values.

Ex:

X = sum of 3 dice, $3 \le X \le 18$, $X \in N$

Definition: If X is a discrete random variable taking on values from a countable set $T \subseteq \mathcal{R}$, then

$$p_{X}(a) = \begin{cases} P(X = a) & \text{for } a \in T \\ 0 & \text{otherwise} \end{cases}$$

is called the probability mass function. Note: $\sum_{a \in T} p(a) = 1$

pmfs

Let X be the number of heads in n independent coin tosses, each with probability p of heads.

$$p_X(x) = Pr(X = k)$$

Let X be the number of heads observed in n coin flips

$$P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$$
, where $p = P(H)$

Probability mass function $(p = \frac{1}{2})$:

k

10

k

The cumulative distribution function for a random variable X is the function F: $\mathcal{R} \rightarrow [0,1]$ defined by $F(a) = P[X \le a]$

Ex: 3 students; homework returned according to random permutation.

X is number of homeworks returned to their correct homework.

What is probability mass function? Cumulative distribution function?

Prob	outcome	Х
====:	========	==
1/6	123	3
1/6	132	1
1/6	213	1
1/6	231	0
1/6	312	0
1/6	321	1

The cumulative distribution function for a random variable X is the function $F: \mathcal{R} \rightarrow [0, 1]$ defined by

 $F(a) = P[X \le a]$

Ex: if X has probability mass function given by:

 $p(1) = \frac{1}{4}$ $p(2) = \frac{1}{2}$ $p(3) = \frac{1}{8}$ $p(4) = \frac{1}{8}$

NB: for discrete random variables, be careful about "≤" vs "<"

expectation

 $E[X] = \sum_{x} x p(x)$

average of random values, *weighted* by their respective probabilities

For the equally-likely outcomes case, this is just the average of the possible random values of X

For *un*equally-likely outcomes, it is again the average of the possible random values of X, weighted by their respective probabilities

Ex I: Let X = value seen rolling a fair die
$$p(1), p(2), ..., p(6) = 1/6$$

$$E[X] = \sum_{x} x p(x)$$

average of random values, *weighted* by their respective probabilities

For the equally-likely outcomes case, this is just the average of the possible random values of X

For *un*equally-likely outcomes, it is again the average of the possible random values of X, weighted by their respective probabilities

Ex I: Let X = value seen rolling a fair die
$$p(1), p(2), ..., p(6) = 1/6$$

$$E[X] = \sum_{i=1}^{6} ip(i) = \frac{1}{6}(1 + 2 + \dots + 6) = \frac{21}{6} = 3.5$$

Ex 2: Coin flip; X = +1 if H (win \$1), -1 if T (lose \$1)

$$E[X] = \Sigma_x x p(x)$$

average of random values, *weighted* by their respective probabilities

Ex 2: Coin flip; X = +1 if H (win \$1), -1 if T (lose \$1)

$$E[X] = \sum_{x} x p(x)$$

average of random values, *weighted* by their respective probabilities

For the equally-likely outcomes case, this is just the average of the possible random values of X

For *un*equally-likely outcomes, it is again the average of the possible random values of X, weighted by their respective probabilities

Ex I: Let X = value seen rolling a fair die
$$p(1), p(2), ..., p(6) = 1/6$$

$$E[X] = \sum_{i=1}^{6} ip(i) = \frac{1}{6}(1 + 2 + \dots + 6) = \frac{21}{6} = 3.5$$

Ex 2: Coin flip; X = +1 if H (win \$1), -1 if T (lose \$1)

 $E[X] = (+1) \cdot p(+1) + (-1) \cdot p(-1) = 1 \cdot (1/2) + (-1) \cdot (1/2) = 0$

 $E[X] = \sum_{x} xp(x)$ average of random values, weighted by their respective probabilities

Another view: A 2-person gambling game. If X is how much you win playing the game once, how much would you expect to win, on average, per game, when repeatedly playing?

 $E[X] = \sum_{x} xp(x)$ average of random values, weighted by their respective probabilities

Another view: A 2-person gambling game. If X is how much you win playing the game once, how much would you expect to win, on average, per game, when repeatedly playing?

Ex I: Let X = value seen rolling a fair die p(1), p(2), ..., p(6) = 1/6If you win X dollars for that roll, how much do you expect to win? $E[X] = \sum_{i=1}^{6} ip(i) = \frac{1}{6}(1+2+\cdots+6) = \frac{21}{6} = 3.5$

Ex 2: Coin flip; X = +1 if H (win \$1), -1 if T (lose \$1) $E[X] = (+1) \cdot p(+1) + (-1) \cdot p(-1) = 1 \cdot (1/2) + (-1) \cdot (1/2) = 0$ "a fair game": in repeated play you expect to win as much as you lose. Long term net gain/loss = 0. 19 Let X be the number of flips up to & including Ist head observed in repeated flips of a biased coin (with probability p of coming up heads). If I pay you \$1 per flip, how much money would you expect to make?

Let X be the number of flips up to & including Ist head observed in repeated flips of a biased coin. If I pay you \$I per flip, how much money would you expect to make?

A calculus trick:

$$\sum_{i\geq 1} iy^{i-1} = \sum_{i\geq 1} \frac{d}{dy} y^i = \sum_{i\geq 0} \frac{d}{dy} y^i = \frac{d}{dy} \sum_{i\geq 0} y^i = \frac{d}{dy} \frac{1}{1-y} = \frac{1}{(1-y)^2}$$
So (*) becomes:

$$E[X] = p \sum_{i\geq 1} iq^{i-1} = \frac{p}{(1-q)^2} = \frac{p}{p^2} = \frac{1}{p}$$
How much
E.g.:

$$p=1/2; \text{ on average head every } 2^{nd} \text{ flip}$$

$$p=1/10; \text{ on average, head every } 10^{\text{th}} \text{ flip.}$$

Let X be the number of heads observed in n repeated flips of a biased coin. If I pay you \$I per head, how much money would you expect to make?

E.g.: p=1/2

p=1/10

how many heads

Let X be the number of heads observed in n repeated flips of a biased coin. If I pay you \$I per head, how much money would you expect to make?

E.g.: p=1/2; on average, n/2 heads p=1/10; on average, n/10 heads $E[X] = \sum_{i=1}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i}$ $=\sum_{i=1}^{n} i\binom{n}{i} p^{i} (1-p)^{n-i}$ $=\sum_{i=1}^{n} n \binom{n-1}{i-1} p^{i} (1-p)^{n-i}$ $= np \sum_{i=1}^{n} \binom{n-1}{i-1} p^{i-1} (1-p)^{n-i}$ $= np \sum_{i=1}^{n-1} \binom{n-1}{i} p^{j} (1-p)^{n-1-j}$ $= np(p + (1 - p))^{n-1} = np$

$$E[X] = \sum_x x p(x)$$

Another view:

$$E[X] = \sum_{s \in S} X(s) \cdot p(s)$$

expectation of a function of a random variable

Calculating E[g(X)]:

 $E[X] = \sum_{x \in S} xp(x)$ $E[X] = \sum_{s \in S} X(s) \cdot p(s)$

Y=g(X) is a new r.v. Calculate P[Y=j], then apply defn:

X = number of people who get their homework back

 $Y = g(X) = X^2 \mod 2$

Prob	outcome	Х
====	========	==
1/6	123	3
1/6	132	1
1/6	213	1
1/6	231	0
1/6	312	0
1/6	321	1

expectation of a function of a random variable

Calculating E[g(X)]:

Y=g(X) is a new r.v. Calculate P[Y=j], then apply defn:

X = sum of 2 dice	rolls
-------------------	-------

i	p(i) = P[X=i]	i•p(i)	
2	1/36	2/36	
3	2/36	6/36	
4	3/36	12/36	
5	4/36	20/36	
6	5/36	30/36	
7	6/36	42/36	
8	5/36	40/36	
9	4/36	36/36	
10	3/36	30/36	
	2/36	22/36	
12	1/36	12/36	
X] =	$= \Sigma_i i p(i) =$	252/36	= 7
	2 3 4 5 6 7 8 9 10 11 12	2 1/36 3 2/36 4 3/36 5 4/36 6 5/36 7 6/36 8 5/36 9 4/36 10 3/36 11 2/36	2 1/36 2/36 3 2/36 6/36 4 3/36 12/36 5 4/36 20/36 6 5/36 30/36 7 6/36 42/36 8 5/36 40/36 9 4/36 36/36 10 3/36 30/36 11 2/36 22/36 12 1/36 12/36

 $Y = g(X) = X \mod 5$

				-
	j	q(j) = P[Y = j]	j•q(j)	
-	0	4/36+3/36 = 7/36	0/36	
	Ι	5/36+2/36 = 7/36	7/36	
	2	1/36+6/36+1/36 = 8/36	16/36	
	3	2/36+5/36 = 7/36	21/36	
	4	3/36+4/36 = 7/36	28/36	
		$E[Y] = \sum_{j} jq(j) =$	72/36	= 2

expectation of a function of a random variable

Calculating E[g(X)]: Another way – add in a different order, using P[X=...] instead of calculating P[Y=...]

X =sum of 2 dice rolls

	i	p(i) = P[X=i]	g(i)•p(i)	
	2	1/36	2/36	
	3	2/36	6/36	
	4	3/36	12/36	
	5	4/36	0/36	*
	6	5/36	5/36	
	7	6/36	12/36	
	8	5/36	15/36	
	9	4/36	16/36	
	$\overline{10}$	3/36	0/36	
		2/36	2/36	
	12	1/36	2/36	
]	= Σ	$E_i g(i)p(i) =$	72/36	=

E[g(X)]

$$Y = g(X) = X \mod 5$$

				_
	j	q(j) = P[Y = j]	j•q(j)	
A	0	4/36+3/36=7/36	0/36	
	Ι	5/36+2/36 = 7/36	7/36	
	2	1/36+6/36+1/36 = 8/36	16/36]
	3	2/36+5/36 = 7/36	21/36	1
	4	3/36+4/36 = 7/36	28/36]
		$E[Y] = \sum_{j} jq(j) =$	72/36	= 2

Above example is not a fluke.

Theorem: if Y = g(X), then $E[Y] = \sum_i g(x_i)p(x_i)$, where

 x_i , i = 1, 2, ... are all possible values of X.

Proof: Let y_j , j = 1, 2, ... be all possible values of Y.

Note that $S_j = \{ x_i | g(x_i)=y_j \}$ is a *partition* of the domain of g.

BT pg.84-85

Above example is not a fluke.

Theorem: if Y = g(X), then $E[Y] = \sum_i g(x_i)p(x_i)$, where

 x_i , i = 1, 2, ... are all possible values of X.

Proof: Let y_j , j = 1, 2, ... be all possible values of Y.

BT pg.84-85

properties of expectation

A & B each bet \$1, then flip 2 coins:	HH A wins \$2
	HT Each takes TH back \$1
	TT B wins \$2
Let X be A's net gain: +1, 0, -1, resp.:	P(X = +1) = 1/4
	P(X = +1) = 1/4 P(X = 0) = 1/2 P(X = -1) = 1/4
	P(X = -1) = 1/4
What is E[X]?	
$E[X] = \cdot /4 + 0 \cdot /2 + (-1) \cdot /4 = 0$	
What is E[X ²]?	Big Deal Note: E[X ²] ≠ E[X] ²
$E[X^2] = ^{2} \cdot /4 + 0^{2} \cdot /2 + (-1)^{2} \cdot /4 =$	1/2