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properties of  expectation

Note:     Linearity is special!
It is not true in general that 

E[X•Y] = E[X] • E[Y]
E[X2] = E[X]2

E[X/Y] = E[X] / E[Y]
E[asinh(X)] = asinh(E[X])

•
•
•

 



variance
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more variance examples
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Random variables independence

Arau X and an event E are independent f
Fx Pr X x NE Pr X x PrlE

2r.vn's X Y are independent of
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Flip in independently 2h times
Zn heads in 2h tresses

Xi heads in Austin tosses
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Theorem: If X & Y are independent, then  
Var[X+Y] = Var[X]+Var[Y]

Proof:  

variance of  independent r.v.s is additive
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a zoo of  (discrete) 
random variables



discrete uniform random variables

A discrete random variable X equally likely to take any 
(integer) value between integers a and b, inclusive, is uniform.

Notation:           

Probability mass function:

Mean:

Variance:
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discrete uniform random variables

A discrete random variable X equally likely to take any 
(integer) value between integers a and b, inclusive, is uniform.

Notation:           X ~ Unif(a,b)

Probability:

Mean, Variance:

Example: value shown on one  
roll of a fair die is Unif(1,6):

P(X=i) = 1/6  
E[X]    = 7/2  
Var[X] = 35/12
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In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

Examples:

Number of coin flips until first head

Number of blind guesses on SAT until I get one right

Number of darts thrown until you hit a bullseye

Number of random probes into hash table until empty slot

Number of wild guesses at a password until you hit it

Probability mass function:

Mean:                                           Variance:

geometric distribution
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In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

Examples:

Number of coin flips until first head

Number of blind guesses on SAT until I get one right

Number of darts thrown until you hit a bullseye

Number of random probes into hash table until empty slot

Number of wild guesses at a password until you hit it

P(Y=k) = (1-p)k-1p;   

Mean 1/p;                                    Variance (1-p)/p2

geometric distribution
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Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)

Mean:

Variance:
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Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)
E[X] = E[X2] = p
Var(X) = E[X2] – (E[X])2 = p – p2 = p(1-p)

Examples:
coin flip
random binary digit
whether a disk drive crashed
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Jacob (aka James, Jacques) 
Bernoulli, 1654 – 1705 


