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Independence of events

Intuition: E is independent of F if the chance of E occurring is 
not affected by whether F occurs.

Formally:

or
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Pr(E|F ) = Pr(E) Pr(E \ F ) = Pr(E)Pr(F )

These two definitions are equivalent.



Independence

Draw a card from a shuffled deck of 52 cards.

E:  card is a spade

F:  card is an Ace

Are E and F independent?
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Independence

Toss a coin 3 times. Each of 8 outcomes equally likely. 
Define

A = {at most one T} = {HHH, HHT, HTH, THH}

B = {at most two Heads}= {HHH}c

Are A and B independent?
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Independence as an assumption

It is often convenient to assume independence. 

People often assume it without noticing.

Example: A sky diver has two chutes. Let

E = {main chute doesn’t open}          Pr (E) = 0.02

F = {backup doesn’t open}                Pr (F) = 0.1

What is the chance that at least one opens assuming 
independence?
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Independence as an assumption

It is often convenient to assume independence. 

People often assume it without noticing.

Example: A sky diver has two chutes. Let

E = {main chute doesn’t open}          Pr (E) = 0.02

F = {backup doesn’t open}                Pr (F) = 0.1

What is the chance that at least one opens assuming 
independence?

Note: Assuming independence doesn’t justify the 
assumption! Both chutes could fail because of the same 
rare event, e.g. freezing rain.
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Using independence to define a probabilistic model

We can define our probability model via independence.

Example: suppose a biased coin comes up heads with 
probability 2/3, independent of other flips.

Sample space: sequences of 3 coin tosses.

Pr (3 heads)=?

Pr (3 tails) = ?

Pr (2 heads) = ?
7
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biased coin

Suppose a biased coin comes up heads with probability p, 
independent of other flips

P(n heads in n flips)
P(n tails in n flips)
P(HHTHTTT)   
P(exactly k heads in n flips)
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biased coin

Suppose a biased coin comes up heads with probability p, 
independent of other flips

P(n heads in n flips) =  pn

P(n tails in n flips) =  (1-p)n

Pr(HHTHTTT)   
= p2(1-p)p(1-p)3 = p#H(1-p)#T

P(exactly k heads in n flips)

Aside: note that the probability of some number of heads =

as it should, by the binomial theorem.

A Hit
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Suppose a biased coin comes up heads with 
probability p, independent of other flips

P(exactly k heads in n flips)

How does this compare to p=1/2  case?

biased coin
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Suppose a biased coin comes up heads with 
probability p, independent of other flips

P(exactly k heads in n flips)

Note when p=1/2, this is the same result we would have 
gotten by considering n flips in the “equally likely 
outcomes” scenario.  But  p different from ½ makes that 
inapplicable.  Instead, the independence assumption allows 
us to conveniently assign a probability to each of the 2n

outcomes, e.g.:

Pr(HHTHTTT) = p2(1-p)p(1-p)3 = p#H(1-p)#T

biased coin

C
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Contrast: a series network

n routers, ith has probability pi of failing, independently

P(there is functional path) = 

…

p1

p2

pn

network failure
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Contrast: a series network

n routers, ith has probability pi of failing, independently
P(there is functional path) = 

P(no routers fail)

…

p1

p2

pn

network failure

= (1 – p1)(1 – p2) ⋯ (1 – pn)
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hashing

A data structure problem:  fast access to small subset of data 
drawn from a large space.

A solution: hash function h:D→{0,...,n-1} crunches/scrambles 
names from large space into small one.  

E.g.,  if x is integer:    h(x) = x mod n  

Everything that hashes to same location stored in linked list.  
Good hash functions approximately randomize placement.
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(Large) space of 
potential data 

items, say names 
or SSNs or IP 

addresses, only a 
few of which are 

actually used (Small) hash table 
containing  actual data
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Scenario: Hash m< n keys from D 
into size n hash table.  

How well does it work?

Worst case: All collide in one bucket.  (Perhaps too pessimistic?)

Best case: No collisions.                         (Perhaps too optimistic?)

A middle ground: Probabilistic analysis. 

Below, for simplicity, assume 

- Keys drawn from D randomly, independently (with replacement)

- h maps equal numbers of domain points into each range bin, i.e., |D| = 
k|R| for some integer k, and |h-1(i)| = k for all 0 ≤ i ≤ n-1

Many possible questions; a few analyzed below
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hashing

m keys hashed (uniformly) into a hash table with n buckets
Each key hashed is an independent trial
E = at least one key hashed to first bucket
What is P(E) ?
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hashing

m keys hashed (uniformly) into a hash table with n buckets
Each key hashed is an independent trial
E = at least one key hashed to first bucket
What is P(E) ?
Solution:
Fi = key i not hashed into first bucket (i=1,2,…,m)
P(Fi) = 1 – 1/n = (n-1)/n for all i=1,2,…,m
Event (F1 F2 … Fm) = no keys hashed to first bucket
P(E)

= 1 – P(F1 F2 ⋯ Fm)
= 1 – P(F1) P(F2) ⋯ P(Fm)
= 1 – ((n-1)/n)m

≈1-exp(-m/n)

indp

2
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hashing

m keys hashed (non-uniformly) to table w/ n buckets
Each key hashed is an independent trial, with probability pi

of getting hashed to bucket i
E = At least 1 of first k buckets gets ≥ 1 key 
What is P(E) ?

Priateeast garstk.mu get ng n'FIFI
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hashing

m keys hashed (non-uniformly) to table w/ n buckets
Each string hashed is an independent trial, with probability 
pi of getting hashed to bucket i
E = At least 1 of first k buckets gets ≥ 1 key 
What is P(E) ?
Solution:
Fi = at least one key hashed into i-th bucket
P(E) = P(F1 ∪ ⋯ ∪ Fk) = 1-P((F

1
∪ ⋯ ∪ Fk)c)

= 1 – P(F1
c F2

c … Fk
c)

= 1 – P(no strings hashed to buckets 1 to k)
= 1 – (1-p1-p2-⋯-pk)m

prcgikhromgastkbn.ws Ti IpILtp



If E and F are independent, 

then so are E and Fc

and  so are Ec and F

and  so are Ec and Fc
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If E and F are independent, 

then so are E and Fc

and  so are Ec and F

and  so are Ec and Fc

Proof:     P(EFc) = P(E) – P(EF)

= P(E) – P(E) P(F)
= P(E) (1-P(F))

= P(E) P(Fc)
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Independence of several events

Three events E, F, G are mutually independent if

24

Pr(E \ F ) = Pr(E)Pr(F )

Pr(F \G) = Pr(F )Pr(G)

Pr(E \G) = Pr(E)Pr(G)

Pr(E \ F \G) = Pr(E)Pr(F )Pr(G)



Pairwise independent

E, F and G are pairwise independent if E is independent of F, 
F is independent of G, and E is independent of G.

Example: Toss a coin twice.

E =  {HH, HT}

F =  {TH, HH}

G = {HH, TT}

These are pairwise independent, but not mutually 
independent.
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Independence of several events

Three events E, F, G are mutually independent if
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Pr(E \ F ) = Pr(E)Pr(F )

Pr(F \G) = Pr(F )Pr(G)

Pr(E \G) = Pr(E)Pr(G)

Pr(E \ F \G) = Pr(E)Pr(F )Pr(G)

If E, F and G are mutually independent, then E will be 
independent of any event formed from F and G.

Example:  E is independent of F U G.
Pr ( F U G | E) = Pr (F | E) + Pr (G | E) – Pr (FG | E)

=  Pr (F) + Pr (G) - Pr (EFG)/Pr(E)
=     Pr (F) + Pr (G) - Pr (FG)= Pr( F U G )

uFqw PrlwlE
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deeper into independence

Recall:  Two events E and F are independent if
P(EF) = P(E) P(F)

If E & F are independent, does that tell us anything about
P(EF|G), P(E|G), P(F|G), 

when G is an arbitrary event?  In particular, is
P(EF|G) = P(E|G) P(F|G) ?

In general, no.
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deeper into independence

Roll two 6-sided dice, yielding values D1 and D2

E = { D1 = 1 }
F = { D2 = 6 }
G = { D1 + D2 = 7 }

E and F are independent

P(E|G) =
P(F|G) =
P(EF|G) =

so E|G and F|G are not independent!

a PrfEA f
Pr F ke
Prca La Prf

46
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deeper into independence

Roll two 6-sided dice, yielding values D1 and D2

E = { D1 = 1 }
F = { D2 = 6 }
G = { D1 + D2 = 7 }

E and F are independent

P(E|G) = 1/6
P(F|G) = 1/6, but 
P(EF|G) = 1/6, not 1/36

so E|G and F|G are not independent!
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conditional independence

Definition:
Two events E and F are called conditionally independent 
given G, if
P(EF|G) = P(E|G) P(F|G)
Or, equivalently (assuming P(F)>0, P(G)>0),
P(E|FG) = P(E|G)

PrfAIB PrtA 3 pMAiBPrcB B

PrfEtFG P EI Pr FIGPr G
Prong pro
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Randomly choose a day of the week
A = { It is not a Monday }
B = { It is a Saturday }
C = { It is the weekend }
A and B are dependent events
P(A) = 6/7,  P(B) = 1/7,  P(AB) = 1/7.

Now condition both A and B on C:

conditioning can also break DEPENDENCE

PRCA 87
PNB 47
C 47
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Randomly choose a day of the week
A = { It is not a Monday }
B = { It is a Saturday }
C = { It is the weekend }
A and B are dependent events
P(A) = 6/7,  P(B) = 1/7,  P(AB) = 1/7.
Now condition both A and B on C:
P(A|C) = 1,  P(B|C) = ½,  P(AB|C) = ½
P(AB|C) = P(A|C) P(B|C) ⇒A|C and B|C independent

Dependent events can become independent 
by conditioning on additional information!

conditioning can also break DEPENDENCE

Another reason why 
conditioning is so useful
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independence: summary

• Events E & F are independent if 

• P(EF) = P(E) P(F), or, equivalently P(E|F) = P(E) (if p(E)>0)

• More than 2 events are indp if, for alI subsets, joint probability = 
product of separate event probabilities

• Independence can greatly simplify calculations

• Dependent means correlated, associated, (partially) predictive 

• Independence can be used to define probability models.

• For fixed G, conditioning on G gives a probability measure, 
P(E|G)

• But “conditioning” and “independence” are orthogonal:
• Events E & F that are (unconditionally) independent may become 

dependent when conditioned on G
• Events that are (unconditionally) dependent may become 

independent when conditioned on G 
33



Problem

In a group of N people 15% are left-handed.

Suppose that 100 times you pick a random person (each 
person is picked each time with probability 1/N) and ask 
that person if they are left-handed or not.

What is the probability that among the 100 queries, 55 
people are left-handed?

36

✓
100

55

◆
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Problem

You have 50 pairs of socks. No two have the same color 
and pattern. You reach in to your drawer and grab 5 
random socks. What is the probability that there is a pair 
among the 5?

Case 1: the left and right sock from each pair are 
distinguishable.  (i.e., all 100 socks are distinguishable).
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Problem

You have 50 pairs of socks. No two have the same color 
and pattern. You reach in to your drawer and grab 5 
random socks one at a time. What is the probability that 
there is a pair among the 5?

Case 1: the left and right sock from each pair are 
distinguishable.

38
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Problem

You have 50 pairs of socks. No two have the same color 
and pattern. You reach in to your drawer and grab 5 
random socks one at at time. What is the probability that 
there is no pair among the k?

Case 1: the left and right sock from each pair are not 
distinguishable.
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Problem

You have 10 pairs of socks. No two have the same color 
and pattern. You reach in to your drawer and grab 5 
random socks one at a time. What is the probability that 
there is no pair among the k?

Case 1: the left and right sock from each pair are not 
distinguishable.

Pr (no pair in 1st)  Pr (no pair in1st and 2nd | no pair in 1st) Pr 
(3rd diff | 1st and 2nd diff) Pr (4th diff | 1st – 3rd diff) Pr (5th

diff | 1st - 4th diff) 

=

40
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Problem

Toss a red die and a green die. What is the probability that 
the sum mod 6 is 4 given that the green die shows a 5?
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Pr(G = 5 and (R+G) mod 6 = 4)

Pr(G = 5)

Pr((R+G) mod 6 = 4)|G = 5) =

Pr(G = 5 and R = �1 mod 6) = Pr(G = 5 and R = 5) =
1

36

=
1
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