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Independence of events

Intuition: E is independent of F if the chance of E occurring is
not affected by whether F occurs.

Formally:

Pr(E|F) = Pr(E) °of Pr(ENF) = Pr(E)Pr(F)

These two definitions are equivalent.



Independence

Draw a card from a shuffled deck of 52 cards.
E: card is a spade

F: card is an Ace

Are E and F independent!?



Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.
Define

A = {at most one T} = {HHH, HHT, HTH, THH}
B = {at most two Heads}= {HHH}¢

Are A and B independent?



Independence as an assumption

It is often convenient to assume independence.

People often assume it without noticing.

Example: A sky diver has two chutes. Let
E = {main chute doesn’t open} Pr (E) = 0.02
F = {backup doesn’t open} Pr (F) = 0.1

What is the chance that at least one opens assuming
independence?



Independence as an assumption

It is often convenient to assume independence.

People often assume it without noticing.

Example: A sky diver has two chutes. Let
E = {main chute doesn’t open} Pr (E) = 0.02
F = {backup doesn’t open} Pr (F) = 0.1

What is the chance that at least one opens assuming
independence!?

Note: Assuming independence doesn’t justify the
assumption! Both chutes could fail because of the same
rare event, e.g. freezing rain.



Using independence to define a probabilistic model

We can define our probability model via independence.

Example: suppose a biased coin comes up heads with
probability 2/3, independent of other flips.

Sample space: sequences of 3 coin tosses.

Pr (3 heads)=!?
Pr (3 tails) =?
Pr (2 heads) =?



biased coin

Suppose a biased coin comes up heads with probabilit

independent of other flips
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biased coin

Suppose a biased coin comes up heads with probability p,
independent of other flips

P(n heads in n flips) p"

(NS T

P(n tails in n flips)
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Aside: note that the probability of some number of heads = A —\
as it should, by the binomial theorem. l > <L =+ A-p)" =
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Suppose a biased coin comes up heads with
probability p, independent of other flips

P(exactly k heads in n flips) =

How does this compare to p=1/2 case?
ol ovhamss £ iy Rl Pr(w)= 3?
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biased coin

Suppose a biased coin comes up heads with i
probability p, independent of other flips \i/

P(exactly k heads in n flips) = (n) pF (1 —p)nF
Note when p=1/2, this is the same result we would have
gotten by considering n flips in the “equally likely
outcomes’ scenario. But p different from 2 makes that
inapplicable. Instead, the independence assumption allows
us to conveniently assign a probability to each of the 2"
outcomes, e.g.:

@= p2(1-p)p(1-p)* = p(1-p)*T



network failure

Contrast: a series network

n routers, i*" has probability p; of failing, independently

("p) 0y - (je)

N

P(there is functional path) = _ l\ (\A ?'>
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network failure

Contrast: a series network

n routers, i*" has probability p; of failing, independently
P(there is functional path) =
P(no routers fail)

=l =p)(I =p2) - (I =pn)
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A data structure problem: fast access to small subset of data
drawn from a large space.

S NCY i

D \,\\*\’*\
(Large) space of =) R

Qg, potential data 0
items, say nhames
(a’ or SSNs or IP_
addresses, only a

few of which are n-1

actually used (Small) hash table
NX\* -} containing actual data

A solution: hash function h:D—{0,...,n-1} crunches/scrambles

names from large space-i all one.

E.g., if x is integer: ( h(x) = x mod n

Everything that hashes to same location stored in linked list.
Good hash functions approximately randomize placement.




ox
|

Scenario: Hash m< n keys from D 3

into size n hash table. g:

tolly

‘2R VN,
. NR= R ety 4\5 w
How well does it work!?

Worst case: All collide in one bucket. (Perhaps too pessimistic?)

Best case: No collisions. (Perhaps too optimistic?)

A middle ground: Probabilistic analysis.

Below, for simplicity, assume

- Keys drawn from D randomly, independently (with replacement)

- h maps equal numbers of domain points into each range bin, i.e., |D|
R| for some integer k, and |h*/(i)| = k for all 0 £ i € n-/

elow >

Many possible questions; a fe



hashing

m keys hashed (uniformly) into a hash tabl}q\ with n buckets
Each key hashed is an independent trial — Pe(apervoom) = W
E = at least one key hashed to first bucket
What is P(E) ?

m‘bw\w"g

t o Monchat) = \— P w0 =
AEIEE Muj—a\ et Lﬂ, o
== (e ¥ by silechesd deopveh g fo e bt

I ‘ .
| ="
™ " R
— \— (lyj. < \"Lez> - \‘Q/
A =
\ -
Y
h‘&“\ * N 18



e 3 lex
hashing

m keys hashed (uniformly) into a hash table with n buckets
Each key hashed is an independent trial

E = at least one key hashed to first bucket
What is P(E) ?

Solution:
F, = key i not hashed into first bucket (i=1,2,...,m)
P(F) =1 —1/n=(n-1)/nforall i=1,2,...,m

Event (F, F, ... F,) = no keys hashed to first bucket
P(E)

= | —P(F, F, -

= | —P(F,) P(FZ) P(Fm)w
=1 —((n-1)/n)m

= | -exp(-m/n)
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hashing

m keys hashed (non-uniformly) to table w/ n buckets
Each key hashed is an independent trial, with probability p;

of getting hashed to bucket i T
E = At least | of first k buckets gets 2 | key )

What is P(E) ? \ 1”—" ,\\3;
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m keys hashed (non-uniformly) to table w/ n buckets
Each string hashed is an independent trial, with probability
p; of getting hashed to bucket i
E = At least | of first k buckets gets 2 | key
What is P(E) ?
Solution:
F; = at least one key hashed into i-th bucket
P(E) = P(Fy U --- U F) = I-P((F, U --- U F))
=1 -P(FcFC°... R
= | — P(no strings hashed to buckets | to k)
=1 = (I-pi-p2===-p)™
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If E and F are independent,
then so are E and F¢
and so are Ecand F

and so are Ecand F¢

Proof: P(EF) = P(E) — P(EF)
= P(E) - P(E) P(F)

= P(E) (I-P(F))
= P(E) P(F9)
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Independence of several events

Three events E, F, G are mutually independent if
Pr(ENF)= Pr(E)Pr(F)
Pr(FNG)= Pr(F)Pr(G)
Pr(ENG)= Pr(E)Pr(G)
Pr(ENFNG)=Pr(E)Pr(F)Pr(G)
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Pairwise independent

E, F and G are pairwise independent if E is independent of F,
F is independent of G, and E is independent of G.

Example: Toss a coin twi

E= {HH, HT} Pelwwy =3
F= {TH, HH} T
G ={HH, TT}

Prienene) + W(E\i’ig’;)ww\
%\

These are pairwise independent, but not mutually
independent.

25



Independence of several events

Three events E, F, G are mutually independent if
Pr(ENF)= Pr(E)Pr(F)
Pr(FNG)= Pr(F)Pr(G)
Pr(ENG)= Pr(E)Pr(G)
Pr(ENFNG)= Pr(E)Pr(F)Pr(G)

If E, F and G are mutually independent, then E will be
independent of any event formed from F and G.

Example: E is independent of F U G.

Pr(FUG|E)=Pr(F|E)+Pr(G|E)—Pr(FG|E)
~ = Pr(F) + Pr (G) - Pr (EFG)/Pr(E)

Pr(F) + Pr (G) - Pr (FG)=Pr(FUG)

26
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deeper into independence

Recall: Two events E and F are independent if
P(EF) = P(E) P(F)

If E & F are independent, does that tell us anything about
P(EF|G), P(E|G), P(F|G),

when G is an arbitrary event? In particular, is

P(EF|G) = P(E|G)-P(F|G) ?

In general, no.
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deeper into independence

Roll two 6-sided dice, yielding values D, and D,
E={D, =1} (£} = ¢

F={D,=6)} P((\‘»)-.A&
G={D +D,=7} ) = AG e I C SRR (°\‘)l5>

E and F are independent

PEIG) = /%
P(FIG) = %
P(EFIG) =/

so E|G and F|G are not independent!
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deeper into independence

Roll two 6-sided dice, yielding values D, and D,
E={D =1}

F={D,=6}

G={D, +D,=7}

E and F are independent

P(E|G) = 1/6
P(F|G) = 1/6, but
P(EF|G) = 1/6, not 1/36

so E|G and F|G are not independent!
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conditional independence

P Pc\ﬁ) = ﬁ%‘?"(%g PCNBY@Y=0c(ME )

—

Definition:

Two events E and F are called conditionally independent

given G, if
| P(EF|G) = P(E|G) P(F|G)

Or, equivalently (assuming P(F)>0, P(G)>0),

P(E|FG) = P(E|G)

Pr(e|Fe) = P(Enene) _ - fclen A e (e)
Pr(Ene) B(FOG)

_ MM - Prele)
foene)
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conditioning can also break DEPENDENCE

Randomly choose a day of the week

A ={ltis not a Monday } Pr(N)= 7
B ={ltisa Saturday } e)=~ V7
C ={Itis the weekend } 8 ()= T+

A and B are dependent events
P(A) = 6/7, P(B) = 1/7, P(AB) = 1/7.

Now condition both A and B on C:

mmq Pr(210) P ARB\C)
\\ W\ (4
i 3 EN
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conditioning can also break DEPENDENCE

Randomly choose a day of the week

A ={ltis not a Monday }

B = {ltisa Saturday }

C ={lItis the weekend }

A and B are dependent events

P(A) = 6/7, P(B) = 1/7, P(AB) = 1/7.

Now condition both A and B on C:

P(A|C) = I, P(B|C) = "2, P(AB|C) = '

P(AB|C) = P(A|C) P(B|C) = A|C and B|C independent

Dependent events can become independent

Another reason why
by conditioning on additional information! conditioning is so useful
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independence: summary

Events E & F are independent if

P(EF) = P(E) P(F), or, equivalently P(E|F) = P(E) (i p)>0)

More than 2 events are indp if, for all subsets, joint probability =
product of separate event probabilities

Independence can greatly simplify calculations

Dependent means correlated, associated, (partially) predictive
Independence can be used to define probability models.

For fixed G, conditioning on G gives a probability measure,
P(EIG)

But “conditioning” and “independence” are orthogonal:

Events E & F that are (unconditionally) independent may become
dependent when conditioned on G

Events that are (unconditionally) dependent may become
independent when conditioned on G
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Problem

In a group of N people 15% are left-handed.

Suppose that 100 times you pick a random person (each
person is picked each time with probability 1/N) and ask
that person if they are left-handed or not.

What is the probability that among the 100 queries, 55
people are left-handed?

(15050) (0.15)°°(0.85)*
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Problem

You have 50 pairs of socks. No two have the same color
and pattern. You reach in to your drawer and grab 5
random socks. What is the probability that there is a pair
among the 5!

Case |: the left and right sock from each pair are
distinguishable. (i.e., all 100 socks are distinguishable).

37



Problem

You have 50 pairs of socks. No two have the same color
and pattern. You reach in to your drawer and grab 5
random socks one at a time. What is the probability that
there is a pair among the 5!

Case |: the left and right sock from each pair are
distinguishable.
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Problem

You have 50 pairs of socks. No two have the same color
and pattern. You reach in to your drawer and grab 5
random socks one at at time. What is the probability that
there is no pair among the k?

Case |: the left and right sock from each pair are not
distinguishable.
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Problem

You have 10 pairs of socks. No two have the same color
and pattern. You reach in to your drawer and grab 5
random socks one at a time. What is the probability that
there is no pair among the k?

Case |: the left and right sock from each pair are not
distinguishable.

Pr (no pair in 15t) Pr (no pair inlstand 2" | no pair in Ist) Pr
(37 diff | It and 2" diff) Pr (4t" diff | 15t — 3rd diff) Pr (5%
diff | It - 4t diff)

1 18 16 14 12
1 19 18 17 16
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Problem

Toss a red die and a green die. What is the probability that
the sum mod 6 is 4 given that the green die shows a 5!

Pr((R4+G)mod 6 =4)|G=5) =

Pr(G =5 and (R4 G) mod 6 = 4) 1
Pr(G =5) 6

1
PT(G:5andR:—1mod6):PT(G:5andR:5):%
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