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Maximum Likelihood Estimators

Learning From Data: 
MLE
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Parameter Estimation

Given: independent samples x1, x2, ..., xn from 
a parametric distribution p(x|! )

Goal: estimate ! .

E.g.:  Given sample HHTTTTTHTHTTTHH "
of (possibly biased) coin ßips, estimate 

            !  = probability of Heads

p(x|! ) is the Bernoulli probability mass function with parameter !

Bn



Likelihood Function
P( HHTHH | !  ): 

Probability of HHTHH, 
given P(H) = ! :

! ! 4(1-! )

0.2 0.0013

0.5 0.0313

0.8 0.0819

0.95 0.0407
0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

Theta

P
( H

H
TH

H
 | 

Th
et

a)

max



P(x | ! ):  Probability of event x given model !

Viewed as a function of x (Þxed ! ), itÕs a probability
E.g., #x P(x | ! ) = 1

Viewed as a function of !  (Þxed x), itÕs called likelihood
E.g., #!  P(x | ! ) can be anything; relative values of interest.  "
E.g., if !  = prob of heads in a sequence of coin ßips then"
    P(HHTHH | .6) > P(HHTHH | .5), "
I.e., event HHTHH is more likely when !  = .6 than !  = .5

And  what !  make HHTHH most likely?

Likelihood
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One (of many) approaches to param. est.
Likelihood of (indp) observations x1, x2, ..., xn 

As a function of ! , what  !  maximizes the 
likelihood of the data actually observed
Typical approach: 

Maximum Likelihood 
Parameter Estimation

L(x1, x2, . . . , xn | ! ) =
n!

i =1

f (xi | ! )

!
!" L (!x | " ) = 0 or !

!" logL(!x | " ) = 0
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(Also verify itÕs max, not min, & not better on boundary)
NB:  Òn choose n1Ó term unneeded since outcome sequence is known, but even if 
unknown, it would drop out at the d/d!  step

Example 1
n independent coin ßips, x1, x2, ..., xn;   n0 tails, n1 heads,  
n0 + n1 = n;  !  = probability of heads 

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/d!  = 0
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Parameter Estimation
Given:  indp samples x1, x2, ..., xn from a 
parametric distribution f(x|! ), estimate:  ! .

E.g.:  Given n normal samples, "
estimate mean & variance 

f (x) = 1!
2! " 2

e" (x " µ )2 / (2 " 2 )

! = (µ, " 2)

-3 -2 -1 0 1 2 3

µ ± !

$



 I got data; a little birdie tells me  
itÕs normal, and promises %2 = 1
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X          X  XX    X  XXX               X

Observed Data

x &



-3 -2 -1 0 1 2 3

µ ± !

$

1

        Is the following likely? 

 10

X          X  XX    X  XXX               X

Observed Data

Looks good by eye, but how do I optimize my estimate of $  ?

$ unknown, %2 = 1
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Ex. 2: xi ! N (µ, ! 2), ! 2 = 1, µ unknown

And verify itÕs max, 
not min & not better 
on boundary

 

Sample mean is MLE of 
population mean

dL/d!  = 0

L (x1, x2, . . . , xn |! ) =
n!

i =1

1
!

2"
e! (x i ! ! )2/ 2

ln L (x1, x2, . . . , xn |! ) =
n"

i =1

"
1
2

ln(2" ) "
(xi " ! )2

2

d
d!

ln L (x1, x2, . . . , xn |! ) =
n"

i =1

(xi " ! )

=

#
n"

i =1

xi

$

" n! = 0

%! =

#
n"

i =1

xi

$

/n = x



Hmm É, density '  probability
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So why is ÒlikelihoodÓ function equal to product of 
densities??  (Prob of seeing any speciÞc xi is 0, right?)

a) for maximizing likelihood, we really only care about 
relative likelihoods, and density captures that

b) has desired property that likelihood increases with 
better Þt to the model

and/or

c) if density at x is f(x), for any small ( >0, the probability 
of a sample within ±( /2 of x is )  ( f(x), but (  is constant 
wrt ! , so it just drops out of d/d!  log L(É) = 0.

-3 -2 -1 0 1 2 3

µ ± !

$

1

X          X  XX    X  



Ex2: I got data; a little birdie tells me 
itÕs normal (but does not tell me $, %2)
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X          X  XX    X  XXX               X

Observed Data

x &



-3 -2 -1 0 1 2 3

µ ± !

$

1

Which is more likely: (a) this?
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X          X  XX    X  XXX               X

Observed Data

$, %2  both unknown

$ ± 1



Which is more likely: (b) or this?
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$, %2  both unknown

-3 -2 -1 0 1 2 3

µ ± ! 3   

X          X  XX    X  XXX               X

Observed Data

$ ± 3                 

$



-3 -2 -1 0 1 2 3

µ ± !

$

1

Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X

Observed Data

$, %2  both unknown

$ ± 1



Which is more likely:  (d) or this?
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$, %2  both unknown

-3 -2 -1 0 1 2 3

µ ± !

$

X          X  XX    X  XXX               X

Observed Data

$ ± 0.5



Which is more likely:  (d) or this?
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X          X  XX    X  XXX               X

Observed Data

Looks good by eye, but how do I optimize my estimates of $ & %2 ?
$, %2  both unknown

-3 -2 -1 0 1 2 3

µ ± !

$

$ ± 0.5
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Ex 3: xi � N(µ,⇥2), µ,⇥2 both unknown
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Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since ! 2 drops out of the * /*! 1 = 0 equation

Likelihood 
surface

ln L (x1, x2, . . . , xn |! 1, ! 2) =
n!

i=1

!
1

2
ln(2"! 2) !

(xi ! ! 1)2

2! 2

#
#! 1

ln L (x1, x2, . . . , xn |! 1, ! 2) =
n!

i=1

(xi ! ! 1)
! 2

= 0

"! 1 =

#
n!

i=1

xi

$

/n = x
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Ex. 3, (cont.) 

Sample variance is MLE of 
population variance

ln L(x1, x2, . . . , xn |✓1, ✓2) =
n!

i =1

�1
2

ln(2⇡✓2) � (xi � ✓1)2

2✓2

@

@✓2
ln L (x1, x2, . . . , xn |✓1, ✓2) =

n!

i =1

�1
2

2⇡
2⇡✓2

+
(xi � ✓1)2

2✓2
2

= 0

"✓2 =
#$ n

i =1 (xi � "✓1)2
%

/n = s2



Bias
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Likelihood Function
P( HHTHH | !  ): 

Probability of HHTHH, 
given P(H) = ! :

! ! 4(1-! )
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(Also verify itÕs max, not min, & not better on boundary)

Example 1
n coin ßips, x1, x2, ..., xn;   n0 tails, n1 heads,  n0 + n1 = n;  

!  = probability of heads 

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/d!  = 0

Rec
all



(un-) Bias
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A desirable property:  An estimator Yn of a 
parameter !  is an unbiased estimator if "
       E[Yn]  = !

For coin ex. above, MLE is unbiased: "
  Yn = fraction of heads = ( #1+ i+ nXi)/n, 

(Xi = indicator for heads in i th  trial) so

  E[Yn] = ( #1+ i+ n E[Xi])/n = n ! /n = !

by linearity of expectation



Are all unbiased estimators 
equally good?

No!  

E.g.,  ÒIgnore all but 1st ßip; if it was H,  let "
YnÕ = 1; else YnÕ = 0Ó

Exercise: show this is unbiased

Exercise: if observed data has at least one H 
and at least one T, what is the likelihood of 
the data given the model with !  = Y nÕ ?

 25
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Ex 3: xi � N(µ,⇥2), µ,⇥2 both unknown
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Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since ! 2 drops out of the * /*! 1 = 0 equation

Likelihood 
surface
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Ex. 3, (cont.) 

lnL(x1, x2, . . . , xn|�1, �2) =
⌅

1�i�n

�1
2

ln 2⇥�2 �
(xi � �1)2

2�2

⇥
⇥�2

lnL(x1, x2, . . . , xn|�1, �2) =
⌅

1�i�n

�1
2

2⇥

2⇥�2
+

(xi � �1)2

2�2
2

= 0

�̂2 =
�⇤

1�i�n(xi � �̂1)2
⇥

/n = s̄2

Sample variance is MLE of 
population variance

Rec
all



Bias? if Yn = (#1+ i+ n Xi)/n  is the sample mean then
    E[Yn] = (#1+ i+ n E[Xi])/n = n $/n = $
so the MLE is an unbiased estimator of population mean

Similarly, (#1+ i+ n (Xi-$)2)/n is an unbiased estimator of %2.

Unfortunately, if $ is unknown, estimated from the same data, as 
above,                                 is a consistent, but biased estimate 
of population variance.  (An example of overfitting.)   Unbiased 
estimate (B&T p467):

One Moral: MLE is a great idea, but not a magic bullet
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Ex. 3, (cont.)

Roughly, 
limn&,  = 
correct

known $



Biased?  Yes.  Why?  As an extreme, think about n = 1.  
Then ! 2 = 0; probably an underestimate!

Also, consider n = 2.  Then ! 1 is exactly between the 
two sample points, the position that exactly minimizes 
the expression for ! 2.   Any other choices for ! 1, ! 2 
make the likelihood of the observed data slightly lower.  
But itÕs actually pretty unlikely that two sample points 
would be chosen exactly equidistant from, and on 
opposite sides of the mean (p=0, in fact), so the MLE 
! 2 systematically underestimates ! 2, i.e., is biased.

(But not by much, & bias shrinks with sample size.)

More on Bias of ! 2 
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ConÞdence Intervals
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A Problem With Point Estimates

Reconsider: estimate the mean of a normal distribution.  

Sample X1, X2, É, X n

Sample mean Yn = (#1+ i+ n Xi)/n is an unbiased estimator 
of the population mean.  

But with probability 1, it’s wrong!

Can we say anything about how wrong?

E.g., could I Þnd a value -  s.t. IÕm 95% conÞdent that 
the true mean is within ±-  of my estimate?

 31



ConÞdence Intervals for a Normal Mean

Assume Xi’s are i.i.d.  ~N($, %2 )

Mean estimator Yn = (#1+ i+ n Xi)/n  is a random variable; 
it has a distribution, a mean and a variance.  SpeciÞcally,

    

So,   Yn ~ N($, %2 /n),           ∴            ~ N(0,1)

 32



ConÞdence Intervals for a Normal Mean

Xi’s are i.i.d. ~ N($, %2 )

 Yn ~ N($, %2 /n)                      ~ N(0,1)

E.g., true $ within ±1.96%/. n of estimate ~ 95% of time

N.B:  $ is Þxed, not random;  Yn is random  33


