Learning From Data:
MLE

Maximum Likelihood Estimators



Parameter Estimation
Br(

Given: independent sampleg, x3, ..., x,» from

a parametric distributiomp(x|! )

Goal: estimate! .

E.g.: Given sample HHTTTTTHTHTTTHH
of (possibly biased) coin Rips, estimate

| = probability of Heads

p(x|! ) is the Bernoulli probability mass function with paramdter



Likelihood Function

P(HHTHH |! ):
Probability of HHTHH,
given P(H) 9 :
| 1 4(1) 8

0.2 | 0.0013 :
05 | 00313 °
0.8 | 0.0819

0.95 | 0.0407
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P(x|!): Probablllty of event x givenodel !

Viewed as a function of x (Pxed, itOs arobability
E.g#«P(x[!')=1

Viewed as a function of (bPxed x), itOs callékklihood

E.g.# P(x|!) can be anythingelative values of interest'

E.g., it = prob of heads in a sequence of coin B3ips then
P(HHTHH | .6) > P(HHTHH | .5),

l.e., event HHTHH isnore likely when!

And

what! make HHTHHmost likely?

=.6than! =.5



Maximum Likelihood
Parameter Estimation

One (of many) approaches to param. est.
Likelihood of (indp) observationq,xz, s X
——

N

L(X1,X2,...,Xp |!) = f(xi|!)
Ao ‘T:ah |=;|_Pf

As a function of , what ! maximizes the
likelihood of the data actually observed
Typical approachi-L(x|")=0 or 3~ logL(k |")=0

Loy L vr1€) = ;i%(e(m 1Y)



Example 1

n independent coin 3Ips,, x, ..., x»; noe tails,n; heads,

no+ n; =n; ! = probability of heads N
L($1, L2y...,Tp (9) — (1 — 6)7109711 B WU, N
log L(x1,22,...,2, |0) = mnglog(l—0)+nilogb
0 —
splog L(xy,22,...,2, | 0) = 755+
Setting to zero and solving: Observed fraction of
Successes Immple IS
H — ™ MLE of success
n probability inpopulation

(Also verify itOs max, not min, & not better on boundary)

NB: On choose:® term unneeded since outcome sequence is known, but even if
unknown, it would drop out at thed/d! step 7



Parameter Estimation

Given: indp samples, x;, .., x, from a
parametric distributiorf(x|! ), estimate: ! .

E.g.. Givemn normal samples,
estimate mean & variance

_ 1 A (x" p)?/E?
f(x) = J_We(x w/(2"7)

= (D)




| got data,; a little birdie tells me
itOs normal, and promis#s = 1

AVAER VAV AVAERVAVAVA AV4
/\ /\

Observed Data

X&



Is the following likely?

$ unknown22 =1

Looks good by eye, but how do | optimize my estimateof?

Obser\éed Data
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d
d—!ln L (X1, X2, ..

And verify itOs max,
not min & not better
on boundary

dL/d! =0

2\

2 3 4 ]

| A T A |
e A I ]

N (Y, ! %), !?%=1, punknown

I n
Xall)= L= 1_e’ (xit 1)*/2
_ 2"
1=1
B (x; " 1)?
1) = no= ny '
Xn|!) 2|n(2 ) >
=1
m
an!): (Xi !)
o3
"n
= Xi "nl=0
g 151 ¢
P X, In =X
i=1

Sample mean is MLE of
population mean
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Hmm E, density' probability

So why is OlikelihoodO function equal to product of
densities?? (Prob of seeing any speocifs 0, right?)

a) for maximizing likelinood, we really only care about
relative likelihoods, and density captures that

b) has desired property that likelihood increases wi
better bt to the model

and/or

c) if density ak is f{x), for any smal( >0, the probability
of a sample within ¢/2 of x iIs) ( f(x), but ( is constant
wrt !, so it just drops out ofd/d! logL(E) = O.
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Ex2:1 got data; a little birdie tells me
itOs normal (but doest tell me $, 9%)

AVAER VAV AVAERVAVAVA AV4
/\ /\

Observed Data

X&
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Which is more likely: (a) this?

$,9%2 both unknown

AVAER VAV AVAERVAVAVA AV4
/\ /\

Observed Data
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Which is more likely: (b) or this?

$,9%2 both unknown

AVAVA AVAERVAVAVI

.- -
$ . Observed Data
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Which is more likely: (c) or this?

$,9%2 both unknown

N/ N/ N/ N/ D N/\N/\/ N/
7 AvAunEErAw FAvVAVAY LAy

Obsec ved Data
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Which is more likely: (d) othis?

$,9%2 both unknown

N/ N/ N/ N/ L N/\N/\/ N/
7 A/AVEEErAw FAVA Ve | ZAY

Observed Data
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Which is more likely: (d) othis?

$,9¢ both unknown
Looks good by eye, but how do | optimize my estimate$ & %& ?

///////
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EX 3 z; ~ N(u,0%), 1, 0° both unknown

In 5
' 1 Xj ! |
InL(X1,X2,...,Xn|'1,12) = | Z1n(2" 5) ! (Xi 1)

i=1 2 219
_ Sy _ 0

. I 5

=1 &

'IT!n N
— X; /n = X

i=1

Sample mean is MLE of

W
N ,‘\g%‘;\}\: . .
Qe population mean, again
! 1 | In general, a problem like this results in 2 equations in 2 unknown

Easy in this case, sincedrops out of the* /*! 1 = 0 equatiomg



EX. 3, (cont.)

| N

In L(X]_,Xz ..... Xn |61, (92) = _é |ﬂ(27r92) . ( [ 5 1)
i=1 2

INn

1 27T + (Xi —(91)2

0
— InL(X1,Xo,..., 61,0 = _ =
( 1, A2 an 1 2) B 2210, 29%

00,

#—$ 70
52 = in:]_ (Xi — él)Z n = §2

Sample variance is MLE of
population variance



Bias



Q)O(b\"\ : . :
< Likelihood Function

P(HHTHH |! ):

Probability of HHTHH,
given P(H) 9 :

| 1 4(1) aé
0.2 | 0.0013
05 | 0.0313
0.8 | 0.0819

0.95 0.0407




@(’(&\
& Example 1

n coin BIpsxi, X3, ..., Xa; ho tails,n; heads,no + n) = n;
| = probability of heads AN

0.0015
0.001

L($1, L2y, p (9) = (1 — H)no(gnl R U N—
log L(x1,22,...,2, |0) = mnglog(l—0)+nilogb
o . —n n
splog L(xy,22,...,2, | 0) = 755+
Setting to zero and solving: Observed fraction of
Successes Immple IS
H — ™ MLE of success
n probability inpopulation

(Also verify itOs max, not min, & not better on boundary)
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(un-) Bias

A desirable property: An estimatomnof a
parameter! is anunbiased estimator if"
E[Yn] = |

For coin ex. above, MLE is unbiased:

Y = fraction of heads = ( #1+i+nX)/nN,

(Xi = indicator for heads ini  th trial) so
E[Yn] :\( #i+i+n E[X]D/MN=n 1/n= 1

by linearity of expectation

24



Are all unbiased estimators
equally good?

No!

E.g., Olgnore all but 1st Rip; if it was H," let
YnO = 1, e|SQ1® =00

Exercise: show this is unbiased

Exercise: if observed data has at least one H
and at least one T, what is the likelihood of
the data given the model with =Y ,O ?
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. =i~ N(u,0%), 1, 0° both unknown

InL(xy,x2,...,2,|01,02)

RY.
Z —%ln27r92— (i — 6)

; 205
1<i<n

$i—0
a%llnL(xl,xQ,...,xnwl,Hg) — Z ( 1) — 0

1<i<n 02
01 = (Zlgign 5’72> /n =T

Sample mean is MLE of
population mean, again

! | In general, a problem like this results in 2 equations in 2 unknown
Easy in this case, sincedrops out of the* /*! 1 = 0 equationgs



>

lnL(ﬂﬁl,xQ, .

0]
8—92 1nL(x17aj27 o o o

EX.

3, (cont.)

1 . —0)2
, Tn|01,02) = Z —§1n27T02— (z 57 1)
1<i<n 2
1 27 x; — 01)?
#alfn,62) = 2270 ! 2921) =0
1<i<n 2 2
02 = (Zlgi§n<xi_é1>2> /n = 52

Sample variance is MLE of
population variance
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Ex. 3, (cont.)

Bias? ifY= (#1+i+n Xi)/n is the sample mean then
E[Yi] = (#F1+i+n E[X]D/IN=NnS$/N=9%
so the MLE is annbiased estimator of population mean

known $

r'd
Similarly,#1+i+n (Xi-$)2)/n is an unbiased estimator &

Unfortunately, if§ is unknown, estimatedfrom the same data, as
above, i, = ¥, @=%" s a consistent, bbiused estimate

n

of population variance. (An exampleavéwmased
estimatasar p467):

Roughly,

N (z;—01)> : _
Oy = 2i<i<n o1 liMng, =
_ correct

One Moral: MLE is a great idea, but not a magic bullet
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More on Bias of%

Biased? Yes. Why? As an extreme, think about n = 1.
Then G = 0; probably an underestimate!

Also, consider n = 2. TheR is exactly between the
two sample points, the position thakactly minimizes

the expression foll .. Any other choices fot 1,! 2
make the likelihood of the observed data sligtiyer.
But itOs actually pretty unlikely that two sample points
would be chosen exactly equidistant from, and on
opposite sides of the mea ,So the MLE

O, systematicallynderestimates ! 2, i.e., is biased

(But not by much, & bias shrinks with sample size.)

29



Conbdence Intervals



A Problem With Point Estimates

Reconsider: estimate the mean of a normal distribution.
Sample X, Xz, E, X n

Sample meam¥= (#1+i+n Xi)/n IS an unbiased estimator
of the population mean.

But with probability 1, it’s wrong!
Can we say anything abokiw wrong?

E.g., could | bnd a values.t. IOm 95% conbdent that
the true mean is within £ of my estimate?

31



Conbdence Intervals for a Normal Mean

AssumeX’s are i.i.d. ~N§, %)

Mean estimator ¥ = (#1+i+n Xi)/n IS arandom variable;
It has a distribution, a meamd a variance. Specibcally,

2 i1 Xi RN no® _ o
Var(Y,)=Var (T =3 ;Var(Xi) =5 =
Yo —

So,| ¥~ N($,%/n), .77 ~N(0,1)
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Conbdence Intervals for a Normal Mean

Xi’s are i.i.d. ~ N§, %)

Y, ~ N($,%/n) Z—2 ~N(0,1)
Y, —nu B
P(—z<0\/ﬁ<z)—1 20(—2)
P( z<0/\/ﬁ<z>—1 20(—2)

P(—zo/\n<pu-Y, <zo/yn)=1-20(—2)
P(Y, —zo/Vn<u<Y,+zo/yn)=1-20(—2z)
E.g., trueb within £1.964. n of estimate ~ 95% of time

N.B: $ is bxed, not randomY, is random 33



