Learning From Data: MLE

Maximum Likelihood Estimators

Parameter Estimation

Given: independent samples $x_1, x_2, ..., x_n$ from a parametric distribution $p(x|\theta)$

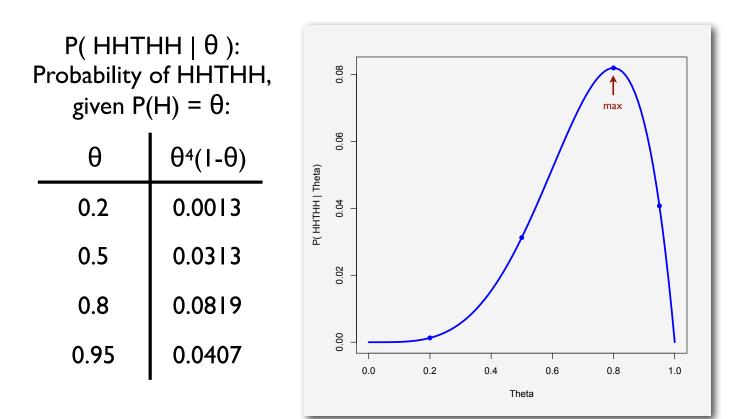
Goal: estimate θ .

E.g.: Given sample HHTTTTTHTHTHTTHH of (possibly biased) coin flips, estimate

 θ = probability of Heads

 $p(x|\theta)$ is the Bernoulli probability mass function with parameter θ

Likelihood Function



 $\begin{array}{l} \mathsf{P}(\mathsf{x} \mid \boldsymbol{\theta}) \text{: Probability of event } \mathsf{x} \text{ given } \textit{model } \boldsymbol{\theta} \\ \mathsf{Viewed as a function of } \mathsf{x} \text{ (fixed } \boldsymbol{\theta}) \text{, it's a } \textit{probability} \\ \mathsf{E.g., } \boldsymbol{\Sigma}_{\mathsf{x}} \mathsf{P}(\mathsf{x} \mid \boldsymbol{\theta}) = \mathsf{I} \end{array}$

Viewed as a function of θ (fixed x), it's called *likelihood*

E.g., $\Sigma_{\theta} P(x \mid \theta)$ can be anything; *relative* values of interest. E.g., if θ = prob of heads in a sequence of coin flips then P(HHTHH | .6) > P(HHTHH | .5),

I.e., event HHTHH is more likely when θ = .6 than θ = .5

And what θ make HHTHH most likely?

Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

n

 $L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$ As a function of θ , what θ maximizes the likelihood of the data actually observed Typical approach: $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta) = 0$ or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta) = 0$

lay L(x,..,x-10) = Žlog(f(x:10))

Example I

n independent coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$; $\theta = \text{probability of heads}$ $L(x_1, x_2, ..., x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$ $\log L(x_1, x_2, ..., x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$ $\frac{\partial}{\partial \theta} \log L(x_1, x_2, ..., x_n \mid \theta) = \frac{-n_0}{1 - \theta} + \frac{n_1}{\theta}$

Setting to zero and solving:

$$\hat{\theta} = \frac{n_1}{n}$$

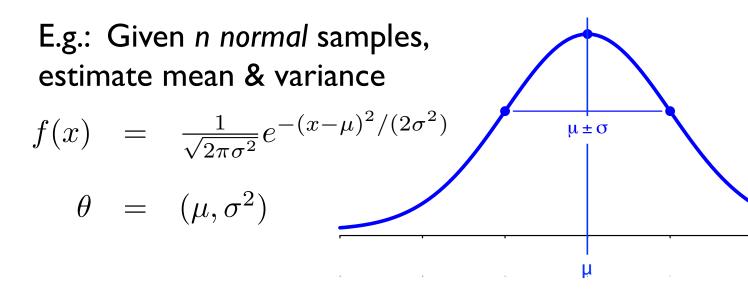
Observed fraction of successes in *sample* is MLE of success probability in *population*

(Also verify it's max, not min, & not better on boundary)

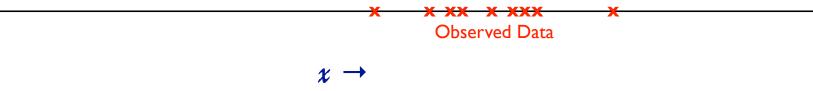
NB: "n choose n_1 " term unneeded since outcome sequence is known, but even if unknown, it would drop out at the $d/d\theta$ step

Parameter Estimation

Given: indp samples $x_1, x_2, ..., x_n$ from a parametric distribution $f(x|\theta)$, **estimate:** θ .



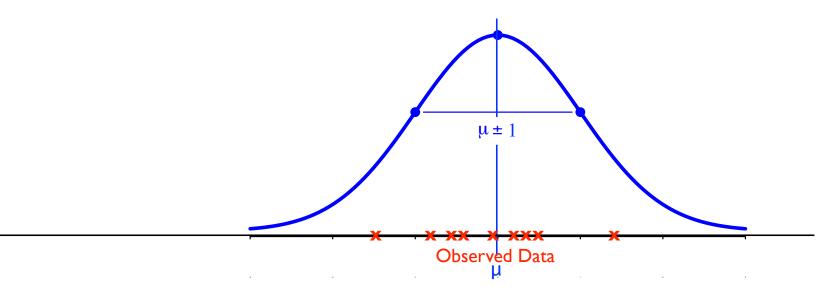
I got data; a little birdie tells me it's normal, and promises $\sigma^2 = I$



Is the following likely?

 μ unknown, $\sigma^2 = 1$

Looks good by eye, but how do I optimize my estimate of $\mu~?$



Ex. 2:
$$x_i \sim N(\mu, \sigma^2), \ \sigma^2 = 1, \ \mu$$
 unknown

$$L(x_1, x_2, \dots, x_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-(x_i - \theta)^2/2}$$

$$\ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{i=1}^n -\frac{1}{2} \ln(2\pi) - \frac{(x_i - \theta)^2}{2}$$

$$\frac{d}{d\theta} \ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{i=1}^n (x_i - \theta)$$
And verify it's max,
not min & not better
on boundary

$$= \left(\sum_{i=1}^n x_i\right) - n\theta = 0$$

$$\widehat{\theta} = \left(\sum_{i=1}^n x_i\right) / n = \overline{x}$$
Sample mean is MLE of

Sample mean is MLE of population mean

Hmm ..., density ≠ probability

So why is "likelihood" function equal to product of densities?? (Prob of seeing any specific x_i is 0, right?)

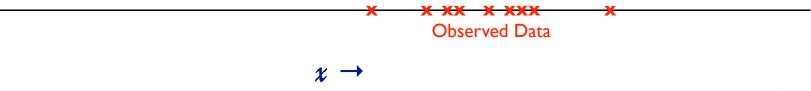
a) for maximizing likelihood, we really only care about *relative* likelihoods, and density captures that

b) has desired property that likelihood increases with better fit to the model

and/or

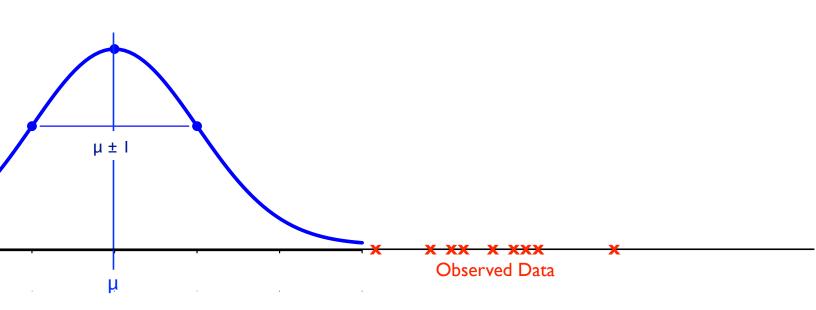
c) if density at x is f(x), for any small $\delta > 0$, the probability of a sample within $\pm \delta/2$ of x is $\approx \delta f(x)$, but δ is constant wrt θ , so it just drops out of $d/d\theta \log L(...) = 0$. u ± 1

Ex2: I got data; a little birdie tells me it's normal (but does *not* tell me μ , σ^2)



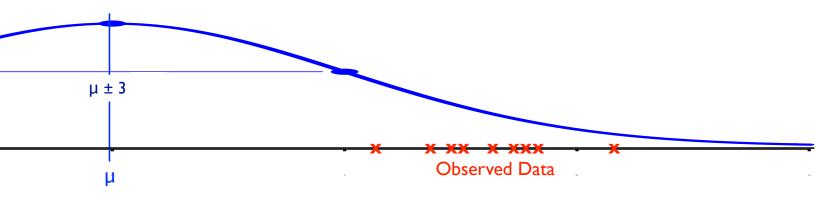
Which is more likely: (a) this?

 μ, σ^2 both unknown



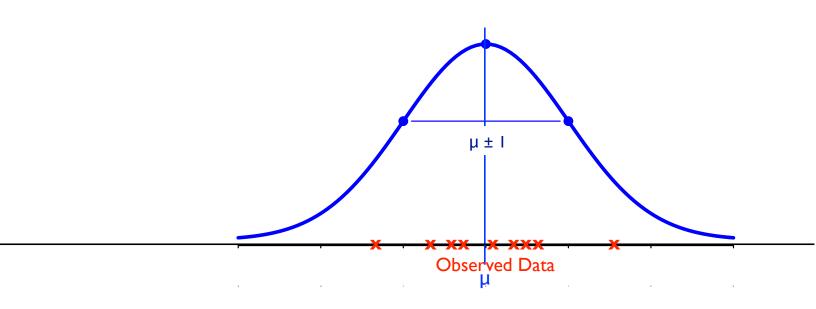
Which is more likely: (b) or this?

 μ, σ^2 both unknown



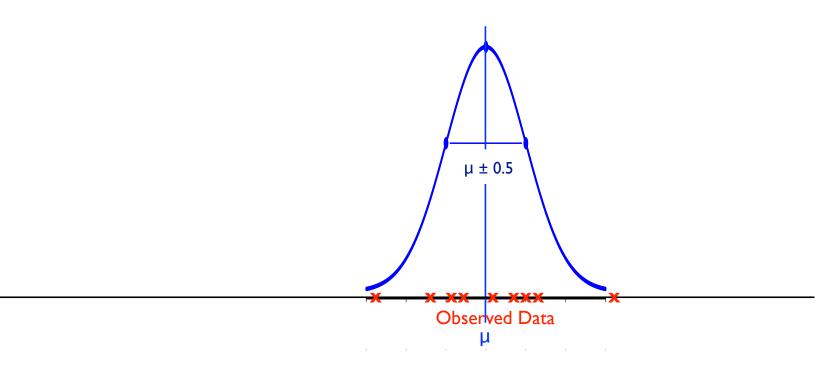
Which is more likely: (c) or this?

 μ, σ^2 both unknown



Which is more likely: (d) or this?

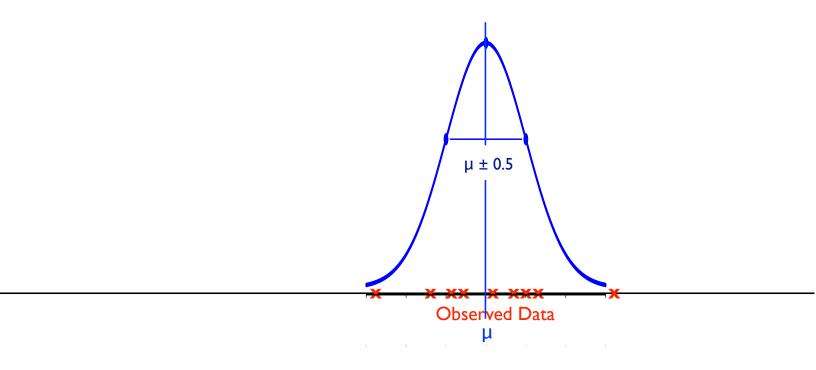
 $\mu,\sigma^2~$ both unknown



Which is more likely: (d) or this?

 μ, σ^2 both unknown

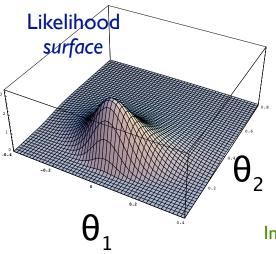
Looks good by eye, but how do I optimize my estimates of $\mu \& \sigma^2$?



Ex 3:
$$x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2$$
 both unknown

n

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n -\frac{1}{2} \ln(2\pi\theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n \frac{(x_i - \theta_1)}{\theta_2} = 0$$



$$\widehat{\theta}_1 = \left(\sum_{i=1}^n x_i\right)/n = \overline{x}$$

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_2 drops out of the $\partial/\partial \theta_1 = 0$ equation 19

Ex. 3, (cont.)

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n -\frac{1}{2} \ln(2\pi\theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n -\frac{1}{2} \frac{2\pi}{2\pi\theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$
$$\widehat{\theta_2} = \left(\sum_{i=1}^n (x_i - \widehat{\theta_1})^2\right) / n = \overline{s}^2$$

Sample variance is MLE of population variance

Bias

P(HHTHH θ): Probability of HHTHH, given P(H) = θ:			
θ	θ⁴(I-θ)	- 0.06	
0.2	0.0013	P(HHTHH Theta)	
0.5	0.0313	0:02 	
0.8	0.0819	J J	
0.95	0.0407		.0
	•	Theta	- 1

Example I

n coin flips, x_1, x_2, \dots, x_n ; n_0 tails, n_1 heads, $n_0 + n_1 = n$; θ = probability of heads 0.0015 0.001 $L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$ 0.0005 $\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$ $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$ Observed fraction of Setting to zero and solving: successes in sample is MLE of success $\underline{n_1}$

(Also verify it's max, not min, & not better on boundary)

probability in *population*

(un-) Bias

A desirable property: An estimator Y_n of a parameter θ is an *unbiased* estimator if $E[Y_n] = \theta$

For coin ex. above, MLE is unbiased: $Y_n = \text{fraction of heads} = (\Sigma_{1 \le i \le n} X_i)/n$,

 $(X_i = indicator for heads in i^{th} trial) so$ $E[Y_n] = (\Sigma_{1 \le i \le n} E[X_i])/n = n \theta/n = \theta$

by linearity of expectation

Are all unbiased estimators equally good?

No!

E.g., "Ignore all but 1 st flip; if it was H, let $Y_n' = 1$; else $Y_n' = 0$ "

Exercise: show this is unbiased

Exercise: if observed data has at least one H and at least one T, what is the likelihood of the data given the model with $\theta = Y_n$ '?

$$\begin{array}{ll} & \quad x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2 \ \text{both unknown} \\ & \quad \ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) \ = \ \sum_{1 \leq i \leq n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2} \\ & \quad \frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) \ = \ \sum_{1 \leq i \leq n} \frac{(x_i - \theta_1)}{\theta_2} = 0 \\ & \quad \text{Likelihood} \\ & \quad \text{Surface} \\ & \quad \theta_1 \ = \ \left(\sum_{1 \leq i \leq n} x_i\right)/n \ = \ \bar{x} \\ & \quad \text{Sample mean is MLE of population mean, again} \\ & \quad \theta_1 \ \text{surface} \ \theta_1 \ \text{surface} \ \theta_2 \ \text{mean} \ \theta_1 \ \text{surface} \ \theta_2 \ \text{mean} \ \theta_1 \ \theta_2 \ \theta_1 \ \theta_2 \ \theta_2 \ \theta_1 \ \theta_2 \ \theta$$

Ex. 3, (cont.)

$$\frac{e^{c}}{\ln L(x_{1}, x_{2}, \dots, x_{n} | \theta_{1}, \theta_{2})} = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_{2} - \frac{(x_{i} - \theta_{1})^{2}}{2\theta_{2}}$$

$$\frac{\partial}{\partial \theta_{2}} \ln L(x_{1}, x_{2}, \dots, x_{n} | \theta_{1}, \theta_{2}) = \sum_{1 \le i \le n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_{2}} + \frac{(x_{i} - \theta_{1})^{2}}{2\theta_{2}^{2}} = 0$$

$$\hat{\theta}_{2} = \left(\sum_{1 \le i \le n} (x_{i} - \hat{\theta}_{1})^{2}\right) / n = \bar{s}^{2}$$

Sample variance is MLE of population variance

Ex. 3, (cont.)

Bias? if $Y_n = (\sum_{1 \le i \le n} X_i)/n$ is the sample mean then $E[Y_n] = (\sum_{1 \le i \le n} E[X_i])/n = n \mu/n = \mu$ so the MLE is an *unbiased* estimator of population mean

Similarly, $(\Sigma_{1 \le i \le n} (X_i - \mu)^2)/n$ is an unbiased estimator of σ^2 .

Unfortunately, if μ is unknown, estimated from the same data, as above, $\hat{\theta}_2 = \sum_{1 \le i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n}$ is a consistent, but biased estimate of population variance. (An example of overfitting.) Unbiased estimate (B&T p467): $\hat{\theta}_1 = \sum_{1 \le i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n}$ Roughly,

$$\hat{\theta}_2' = \sum_{1 \le i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n - 1}$$

Roughly, $\lim_{n\to\infty} =$

One Moral: MLE is a great idea, but not a magic bullet

More on Bias of $\hat{\theta}_2$

Biased? Yes. Why? As an extreme, think about n = 1. Then $\hat{\theta}_2 = 0$; probably an underestimate!

Also, consider n = 2. Then $\hat{\theta}_1$ is exactly between the two sample points, the position that exactly minimizes the expression for θ_2 . Any other choices for θ_1 , θ_2 make the likelihood of the observed data slightly *lower*. But it's actually pretty unlikely that two sample points would be chosen exactly equidistant from, and on opposite sides of the mean (p=0, in fact), so the MLE $\hat{\theta}_2$ systematically underestimates θ_2 , i.e., is biased.

(But not by much, & bias shrinks with sample size.)

Confidence Intervals

A Problem With Point Estimates

Reconsider: estimate the mean of a normal distribution.

Sample X_1, X_2, \ldots, X_n

Sample mean $Y_n = (\Sigma_{1 \le i \le n} X_i)/n$ is an unbiased estimator of the population mean.

But with probability 1, it's wrong!

Can we say anything about how wrong?

E.g., could I find a value Δ s.t. I'm 95% confident that the true mean is within $\pm \Delta$ of my estimate?

Confidence Intervals for a Normal Mean

Assume X_i 's are i.i.d. $\sim N(\mu, \sigma^2)$

Mean estimator $Y_n = (\sum_{1 \le i \le n} X_i)/n$ is a random variable; it has a distribution, a mean and a variance. Specifically,

$$Var(Y_n) = Var\left(\frac{\sum_{i=1}^n X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

So, $Y_n \sim N(\mu, \sigma^2/n)$, $\therefore \frac{Y_n - \mu}{\sigma/\sqrt{n}} \sim N(0, I)$

Confidence Intervals for a Normal Mean

 X_i 's are i.i.d. ~ N(μ , σ^2)

 $Y_n \sim N(\mu, \sigma^2/n)$ $\frac{Y_n - \mu}{\sigma/\sqrt{n}} \sim N(0, I)$

$$\begin{split} P\left(-z < \frac{Y_n - \mu}{\sigma/\sqrt{n}} < z\right) &= 1 - 2\Phi(-z) \\ P\left(-z < \frac{\mu - Y_n}{\sigma/\sqrt{n}} < z\right) &= 1 - 2\Phi(-z) \\ P\left(-z\sigma/\sqrt{n} < \mu - Y_n < z\sigma/\sqrt{n}\right) &= 1 - 2\Phi(-z) \\ P\left(Y_n - z\sigma/\sqrt{n} < \mu < Y_n + z\sigma/\sqrt{n}\right) &= 1 - 2\Phi(-z) \\ \end{split} \\ \end{split}$$
E.g., true μ within $\pm 1.96\sigma/\sqrt{n}$ of estimate ~ 95% of time

N.B: μ is fixed, not random; Y_n is random