Often, several random variables are simultaneously observed X = height and Y = weight X = cholesterol and Y = blood pressure

 $X_1, X_2, X_3 =$ work loads on servers A, B, C

Joint probability mass function:
$$f_{XY}(x, y) = P({X = x} & {Y = y})$$

Joint cumulative distribution function: $F_{XY}(x, y) = P(\{X \le x\} \& \{Y \le y\})$

Two joint PMFs

WZ	Ι	2	3	
1	2/24	2/24	2/24	
2	2/24	2/24	2/24	
3	2/24	2/24	2/24	
4	2/24	2/24	2/24)

X	Ι	2	3	
1	4/24	1/24	1/24	
2	0	3/24	3/24	
3	0	4/24	2/24	
4	4/24	0	2/24	

P(W = Z) = 3 * 2/24 = 6/24P(X = Y) = (4 + 3 + 2)/24 = 9/24

Can look at arbitrary relationships among variables this way

marginal distributions

Two joint PMFs

WZ	1	2	3	$f_W(w)$	XY	Ι	2	3	$f_X(x)$
Ι	2/24	2/24	2/24	6/24	1	4/24	1/24	1/24	6/24
2	2/24	2/24	2/24	6/24	2	0	3/24	3/24	6/24
3	2/24	2/24	2/24	6/24	3	0	4/24	2/24	6/24
4	2/24	2/24	2/24	6/24	4	4/24	0	2/24	6/24
$f_{Z}(z)$	8/24	8/24	8/24		$f_{Y}(y)$	8/24	8/24	8/24	

Question: Are W & Z independent? Are X & Y independent?

marginal distributions

Two joint PMFs

	WZ	Ι	2	3	$f_W(w)$		XY	Ι	2	3	$f_X(x)$
	Ι	2/24	2/24	2/24	6/24		1	4/24	I/24	I/24	6/24
	2	2/24	2/24	2/24	6/24		2	0	3/24	3/24	6/24
	3	2/24	2/24	2/24	6/24		3	0	4/24	2/24	6/24
	4	2/24	2/24	2/24	6/24		4	4/24	0	2/24	6/24
	$f_Z(z)$	8/24	8/24	8/24			$f_{Y}(y)$	8/24	8/24	8/24	
Marginal PMF of one r.v.: sum over the other (Law of total probability)						$f_{Y}(y) = \sum_{x} f_{XY}(x,y)$ $f_{X}(x) = \sum_{y} f_{XY}(x,y)$					

Question: Are W & Z independent? Are X & Y independent?

Repeating the Definition: Two random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent (for any fixed x, y), i.e.

 $\forall x, y P({X = x} & {Y=y}) = P({X=x}) \cdot P({Y=y})$

Equivalent Definition: Two random variables X and Y are independent if their *joint* probability mass function is the product of their *marginal* distributions, i.e.

 $\forall x, y f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$

Exercise: Show that this is also true of their *cumulative* distribution functions

A function g(X,Y) defines a new random variable.

Its expectation is:

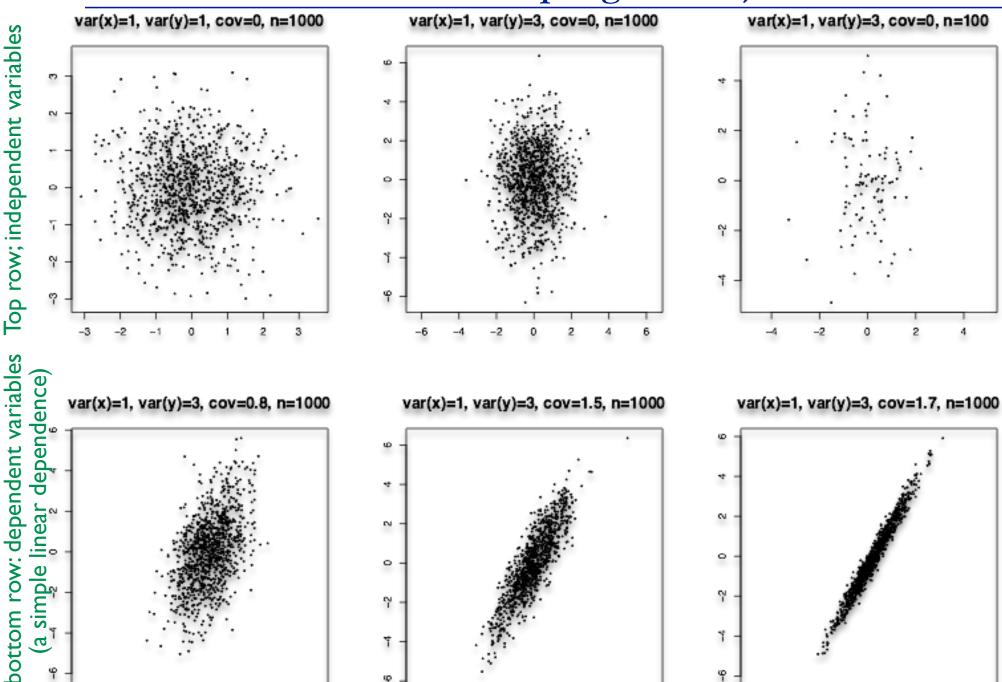
 $E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) f_{XY}(x, y)$ Silike slide 17

Expectation is linear. E.g., if g is linear:

E[g(X, Y)] = E[a X + b Y + c] = a E[X] + b E[Y] + c

Example:	XY	1	2	3
g(X,Y) = 2X-Y		→1 • 4/24	0 • 1 /24	-1 • 1/24
E[g(X,Y)] = 72/24 = 3	2	3 • 0/24	2 • 3/24	I•3/24
$E[g(X,Y)] = 2 \cdot E[X] - E[Y]$	3	5 • 0/24	4 • 4/24	3 • 2/24
$= 2 \cdot 2 \cdot 5 - 2 = 3$	4	7 • 4/24	<mark>6 •</mark> 0/24	5 • 2/24
$- 2^{\circ} \underline{2.5} - \underline{2} - 5$	36			

36



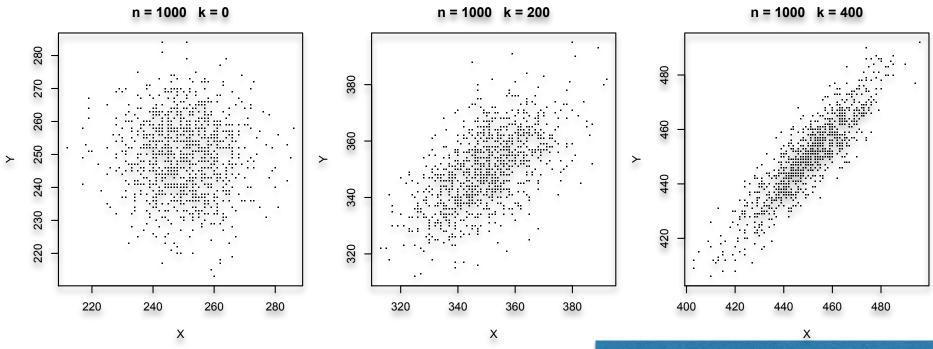
φ

sampling from a joint distribution

φ

37

another example



Flip n fair coins

X = #Heads seen in first n/2+k

Y = #Heads seen in last n/2+k

