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continuous random variables

Discrete random variable: takes values in a finite or countable

set, e.g.
X € {l,2, ..., 6} with equal probability

X is positive integer i with probability 2-

Continuous random variable: takes values in an uncountable

set, e.g.
X is the weight of a random person (a real number)

X is a randomly selected point inside a unit square
X is the waiting time until the next packet arrives at the
server



pdf

f(x): R—=R, the probability density function (or simply “density”)

/\_/u

Require: l.e., distribution is:
f(x) = 0, and < nonnegative, and
f_::o f(x) dx = | «— normalized,

just like discrete PMF



cdf

F(x): the cumulative distribution function (aka the “distribution”)

AN

a b
F(a) =P(X < a) (Area left of a)

Pa<X=<b) =
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cdf

F(x): the cumulative distribution function (aka the “distribution”)

VA W R
A f¥,—

a b
F(a) =P(X < a) (Area left of a)

P(a< X < b) =F(b) - F(a) (Area between a and b)

Relationship between f(x) and F(x)?



cdf

F(x): the cumulative distribution function (aka the “distribution”)

VA W R
A f¥,—

a b
F(a) =P(X < a) (Area left of a)

P(a< X < b) =F(b) - F(a) (Area between a and b)

A key relationship:
f(x) = £ F(x),since F(a) = [ f(x) dx,



why is it called a density?

Densities are not probabilities; e.g. may be > |

P(X = a) = lime—o P(a-€ < X < a) = F(a)-F(a) = 0

(l.e., the probability that a continuous r.v. falls at a specified point is zero. )

But

( the probability that it falls near that point is proportional to the density: )

a-€/2 a a+teg/?2



why is it called a density?

Densities are not probabilities; e.g. may be > |

P(X =a) = lime-o P(a-€ < X < a) = F(a)-F(a) =0

le,
(the probability that a continuous r.v. falls at a specified point is zero. )
But
(the probability that it falls near that point is proportional to the density: )

Pa-&2<X<a+t¢gf2)=

Fa + €/2) - F(a - €/2)

~ €+ f(a)

a-€/2 a a+teg/?2

l.e.,in a large random sample, expect more samples where density is higher
(hence the name “density”).



sums and integrals; expectation

Much of what we did with discrete r.v.s carries over almost
unchanged, with 2.... replaced by [...dx

E.g.
For discrete r.v. X, E[X] = 2x xp(x)

o0

For continuous r.v. X, E[X] :/ x - f(x)dx

— 00
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sums and integrals; expectation

Much of what we did with discrete r.v.s carries over almost
unchanged, with 2.... replaced by [...dx

E.g.
For discrete r.v. X, E[X] = 2x xp(x)
For continuous r.v. X, E[X] :/ x - f(x)dx
Why!?

(a) We define it that way

(b) The probability that X falls “near” x, say within x+dx/2, is
~f(x)dx, so the “average” X should be = 2 xf(x)dx (summed
over grid points spaced dx apart on the real line) and the
limit of that as dx—0 is [xf(x)dx

11



continuous random variables: summary

Continuous random variable X has density f(x), and

Pr(angb):/bf(a:)dx

E[X] :/_Ooa:-f(x)dx



properties of expectation

Linearity

E[aX+b] = aE[X]+b
still true, just as
for discrete

E[X+Y] = E[X]+E[Y]

Functions of a random variable

E[g(X)] — fg(X)f(X)dX just as for discrete,

but w/integral

13



variance

Definition is same as in the discrete case
Var[X] = E[(X-MU)2] where Y = E[X]

|dentity still holds:
Var[X] = E[X?] - (E[X])2 proof “same”

14



example

Let 1 for0<z<1 |
flz) = { 0 elsewhere ll ‘ flx)

0 12
What is F(x)? What is E(X)? !
X <O F(x)
F(*\: { Q% Q<X £\ I :
-1 0 I 2
\ %>\

E()= forom = Gxae S0 5
0 Q

= &\/\1) = ‘gxg‘(—(x) Ax — A—‘s
o



example

1 for0<z<1 !
Let = ll ] x
°t /() { elsewhere %)

|
it a <0 -1 o | P
— a lf O < a S ]_ (Since a = foa ]_dm)
1 ifl<a

~ ! 2 |

ElX] = / xf(x)da;:/ rdr = —| ==

— — 00 0 2 0 2
- ! 201
E[X2] — / 332f(33)d£)3 = / 2dr="| ==
- — 00 0 3 0 3

QA
Vo (R)= é’%\\ y



example

1 for0<z<1 !
L t = fix
: f (:C) { 0 elsewhere #

I 0 I 2
I
F(x)
I 0 II I2
E[X] = _1!
2
> ! 201
B[X? = / a:2f(a:)d:z::/ ridr = | ==
oo 0 31, 3
Var[X| = E[X?] — (E[X])?=1 -1 = (0~0.29)



uniform random variables

X ~ Uni(t,B) is uniform in [0,B] f(x) = {

= =€l 0l
0 otherwise

The Uniform Density Function Uni(0.5,1.0)
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uniform random variables

X ~ U ni(()(, B) iS u niform in [a’ B] N The Uniform Density Function Uni(0.5,1.0)

f(x)

0 otherwise

1 ucla i
f(a;)z{ﬁa e [a, ] i

b b—a
Pr(a < X < b) :/ F(z) dz
a ] 6 - Yes, you should

if x<a<b<p: review your basic
calculus; e.g., these
2 integrals would

/OO o+ /8 be good practice.




waiting for “events”

Radioactive decay: How long until the next alpha particle?

Customers: how long until the next customer/packet arrives at the
checkout stand/server?

Buses: How long until the next #71 bus arrives on the Ave!?

Yes, they have a schedule, but given the vagaries of traffic, riders with-bikes-and-baby-
carriages, etc., can they stick to it?

4 )
Assuming events are independent, happening at some fixed average
rate of A per unit time — the waiting time until the next event is

exponentially distributed (next slide)
- J

20



£(x)

exponential random variables

X ~ Exp(A\)

The Exponential Density Function
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exponential random variables

X ~ Exp(N) E= OQS x A€ ax = "R
()\19_)‘3’j x>0
flz) = C z <0
EX] =1 Var[X] = 55
=
Pr(X > )= e = 1F(@) = "
Memorylessness: ¥ = - e:“ "

Pr(X >s+t| X >s)=Pr(X >t)

Assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as s = 0



Relation to Poisson

Same process, different measures:

Poisson: how many events in a fixed time;

Exponential: how long until the next event , o
A is avg # per unit time;

I/\ is mean wait

23



