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continuous random variables

Discrete random variable: takes values in a finite or countable 
set, e.g. 

X ∈ {1,2, ..., 6} with equal probability

X is positive integer i with probability 2-i

Continuous random variable: takes values in an uncountable 
set, e.g. 

X is the weight of a random person (a real number)
X is a randomly selected point inside a unit square
X is the waiting time until the next packet arrives at the 
server

!2



f(x): R→R,  the probability density function (or simply “density”)

pdf
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f(x)

Require:                       I.e., distribution is:

f(x) ≥ 0,  and                 nonnegative, and

∫    f(x) dx  = 1             normalized, 

                               just like discrete PMF
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F(x): the cumulative distribution function (aka the “distribution”)

F(a) = P(X ≤ a)  = ∫   f(x) dx            (Area left of a)

P(a < X ≤ b)   =                              

b
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F(x): the cumulative distribution function (aka the “distribution”)

F(a) = P(X ≤ a)  = ∫   f(x) dx            (Area left of a)

P(a < X ≤ b) = F(b) - F(a)                 (Area between a and b)
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F(x): the cumulative distribution function (aka the “distribution”)

F(a) = P(X ≤ a)  = ∫   f(x) dx            (Area left of a)

P(a < X ≤ b) = F(b) - F(a)                 (Area between a and b)

Relationship between f(x) and F(x)?
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F(x): the cumulative distribution function (aka the “distribution”)

F(a) = P(X ≤ a)  = ∫   f(x) dx            (Area left of a)

P(a < X ≤ b) = F(b) - F(a)                 (Area between a and b)

A key relationship:

b

f(x)

a

a
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cdf
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f(x) =     F(x), since F(a) = ∫   f(x) dx,a
−∞

d
dx



Densities are not probabilities; e.g. may be > 1

P(X = a) = limε→0 P(a-ε < X ≤ a) = F(a)-F(a) = 0

I.e., the probability that a continuous r.v. falls at a specified point is zero.  

But 

   the probability that it falls near that point is proportional to the density:

why is it called a density?
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Densities are not probabilities; e.g. may be > 1

P(X = a) = limε→0 P(a-ε < X ≤ a) = F(a)-F(a) = 0

I.e., 

    the probability that a continuous r.v. falls at a specified point is zero.  

But 

   the probability that it falls near that point is proportional to the density:

P(a - ε/2 < X ≤ a + ε/2) = 

    F(a + ε/2) - F(a - ε/2) 

    ≈ ε • f(a) 

I.e., in a large random sample, expect more samples where density is higher 
(hence the name “density”).

why is it called a density?

!9

a-ε/2  a  a+ε/2     

f(x)



Much of what we did with discrete r.v.s carries over almost 
unchanged, with Σx...  replaced by  ∫... dx

E.g.
For discrete r.v. X,        E[X] =  Σx xp(x)
For continuous r.v. X,

sums and integrals; expectation
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Much of what we did with discrete r.v.s carries over almost 
unchanged, with Σx...  replaced by  ∫... dx

E.g.
For discrete r.v. X,        E[X] =  Σx xp(x)
For continuous r.v. X,

Why?
(a) We define it that way
(b) The probability that X falls “near” x, say within x±dx/2, is 

≈f(x)dx, so the “average” X should be ≈ Σ xf(x)dx (summed 
over grid points spaced dx apart on the real line) and the 
limit of that as dx→0 is ∫xf(x)dx

sums and integrals; expectation
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continuous random variables: summary

 Continuous random variable X has density f(x), and 



Linearity

E[aX+b] = aE[X]+b

E[X+Y] = E[X]+E[Y]

Functions of a random variable

E[g(X)] = ∫g(x)f(x)dx

Alternatively, let Y = g(X), find the density of Y, say fY, and directly 
compute E[Y] = ∫yfY(y)dy.

properties of  expectation
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still true, just as 
for discrete

just as for discrete, 
but w/integral



variance
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Definition is same as in the discrete case

   Var[X] = E[(X-μ)2]  where μ = E[X]

Identity still holds:
   Var[X] = E[X2] - (E[X])2  proof  “same”



example

Let

What is F(x)? What is E(X)? 
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example

Let
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example

Let
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uniform random variables

 X ~ Uni(α,β) is uniform in [α,β]
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uniform random variables

 X ~ Uni(α,β) is uniform in [α,β]

if α≤a≤b≤β: 
Yes, you should 
review your basic 
calculus;  e.g., these 
2 integrals would 
be good practice.



waiting for “events”

Radioactive decay:  How long until the next alpha particle?

Customers:  how long until the next customer/packet arrives at the 
checkout stand/server?

Buses: How long until the next #71 bus arrives on  the Ave? 

Yes, they have a schedule, but given the vagaries of traffic, riders with-bikes-and-baby-
carriages, etc., can they stick to it? 

Assuming events are independent, happening at some fixed average 
rate of λ per unit time – the waiting time until the next event is 
exponentially distributed (next slide)
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exponential random variables

 X ~ Exp(λ)
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exponential random variables

 X ~ Exp(λ)

= 1-F(t)
Memorylessness:

Assuming exp distr, if you’ve waited s minutes, prob of waiting t more is exactly same as s = 0  

E X Tox a e DX L

D
ax

Jae dx
e I t



Relation to Poisson

 
Same process, different measures:

Poisson: how many events in a fixed time;  
Exponential: how long until the next event
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λ is avg # per unit time;  
1/λ is mean wait


