

continuous random variables

Discrete random variable: takes values in a finite or countable set, e.g.

 $X \in \{1, 2, ..., 6\}$ with equal probability

X is positive integer i with probability 2-i

Continuous random variable: takes values in an uncountable set, e.g.

X is the weight of a random person (a real number) X is a randomly selected point inside a unit square X is the waiting time until the next packet arrives at the server $f(x): R \rightarrow R$, the probability density function (or simply "density")

 $P(a < X \le b) =$

Relationship between f(x) and F(x)?

A key relationship:

$$f(x) = \frac{d}{dx} F(x)$$
, since $F(a) = \int_{-\infty}^{a} f(x) dx$,

Densities are *not* probabilities; e.g. may be > 1

$$P(X = a) = \lim_{\epsilon \to 0} P(a - \epsilon < X \le a) = F(a) - F(a) = 0$$

I.e., the probability that a continuous r.v. falls <u>at</u> a specified point is <u>zero</u>.

But

the probability that it falls <u>near</u> that point is <u>proportional to the density</u>:

Densities are *not* probabilities; e.g. may be > 1

$$P(X = a) = \lim_{\epsilon \to 0} P(a - \epsilon < X \le a) = F(a) - F(a) = 0$$

l.e.,

the probability that a continuous r.v. falls <u>at</u> a specified point is <u>zero</u>.

But

the probability that it falls <u>near</u> that point is <u>proportional to the density</u>:

$$P(a - \epsilon/2 < X \le a + \epsilon/2) =$$

$$F(a + \epsilon/2) - F(a - \epsilon/2)$$

 $\approx \epsilon \cdot f(a)$

I.e., in a large random sample, expect more samples where density is higher (hence the name "density").

Much of what we did with discrete r.v.s carries over almost unchanged, with $\Sigma_{x...}$ replaced by $\int ... dx$

E.g.

For discrete r.v. X, $E[X] = \sum_{x} xp(x)$ For continuous r.v. X, $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$ Much of what we did with discrete r.v.s carries over almost unchanged, with $\Sigma_{x...}$ replaced by $\int ... dx$

E.g.

For discrete r.v. X, $E[X] = \sum_{x} xp(x)$ For continuous r.v. X, $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$

Why?

(a) We define it that way

(b) The probability that X falls "near" x, say within $x\pm dx/2$, is $\approx f(x)dx$, so the "average" X should be $\approx \Sigma xf(x)dx$ (summed over grid points spaced dx apart on the real line) and the limit of that as $dx \rightarrow 0$ is $\int xf(x)dx$

Continuous random variable X has density f(x), and

$$\Pr(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f(x) \, dx$$

Linearity

E[aX+b] = aE[X]+bE[X+Y] = E[X]+E[Y]

still true, just as for discrete

Functions of a random variable

 $E[g(X)] = \int g(x)f(x)dx$

just as for discrete, but w/integral

Alternatively, let Y = g(X), find the density of Y, say f_Y , and directly compute $E[Y] = \int y f_Y(y) dy$.

Definition is same as in the discrete case $Var[X] = E[(X-\mu)^2]$ where $\mu = E[X]$

Identity still holds:

 $Var[X] = E[X^2] - (E[X])^2$

proof "same"

example

example

Let
$$f(x) = \begin{cases} 1 & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

 $F(a) = \int_{-\infty}^{a} f(x)dx$
 $= \begin{cases} 0 & \text{if } a \le 0 \\ a & \text{if } 0 < a \le 1 \text{ (since } a = \int_{0}^{a} 1dx) \end{cases}$
 $E[X] = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} x \, dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$
 $E[X^{2}] = \int_{-\infty}^{\infty} x^{2}f(x)dx = \int_{0}^{1} x^{2} \, dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$

example Let $f(x) = \begin{cases} 1 & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$ f(x) $F(a) = \int_{-\infty}^{\infty} f(x) dx$ F(x) $= \begin{cases} 0 & \text{if } a \le 0 \\ a & \text{if } 0 < a \le 1 \text{ (since } a = \int_0^a 1 dx) \\ 1 & \text{if } 1 < a \end{cases}$ $E[X] = \int_{0}^{\infty} xf(x)dx = \int_{0}^{1} x \, dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$ $E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$ $\mathsf{Var}[X] = E[X^2] - (E[X])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad (\sigma \approx 0.29)$

uniform random variables

uniform random variables

19 X

Prob event

Radioactive decay: How long until the next alpha particle?

Customers: how long until the next customer/packet arrives at the checkout stand/server?

Buses: How long until the next #71 bus arrives on the Ave?

Yes, they have a schedule, but given the vagaries of traffic, riders with-bikes-and-babycarriages, etc., can they stick to it?

Assuming events are independent, happening at some fixed *average* rate of λ per unit time – the waiting time until the next event is exponentially distributed (next slide)

exponential random variables

Х

exponential random variables

Assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as s = 0

Same process, different measures:

Poisson: how many events in a fixed time; Exponential: how long until the next event

 λ is avg # per unit time; I/ λ is mean wait