
CSE 312: Foundations of Computing II

Central Limit Theorem, Tail Bounds, Maximum Likelihood 9 Solutions

Review of Main Concepts
(a) Central Limit Theorem (CLT): Let X1, . . . , Xn be iid random variables with E[Xi] = µ and Var(Xi) =

σ2. Let X =
∑n

i=1Xi, which has E[X] = nµ and Var(X) = nσ2. Let X = 1
n

∑n
i=1Xi, which has

E
[
X
]
= µ and Var(X) = σ2

n . X is called the sample mean. Then, as n → ∞, X approaches the normal

distribution N
(
µ, σ

2

n

)
. Standardizing, this is equivalent to Y = X−µ

σ/
√
n

approaching N (0, 1). Similarly, as

n → ∞, X approaches N (nµ, nσ2) and Y ′ = X−nµ
σ
√
n

approaches N (0, 1).

It is no surprise that X has mean µ and variance σ2/n – this can be done with simple calculations.
The importance of the CLT is that, for large n, regardless of what distribution Xi comes from, X is
approximately normally distributed with mean µ and variance σ2/n. Don’t forget the continuity correction,
only when X1, . . . , Xn are discrete random variables.

(b) Markov’s Inequality: Let X be a non-negative random variable, and α > 0. Then, P (X ≥ α) ≤ E[X]
α .

(c) Chebyshev’s Inequality: Suppose Y is a random variable with E[Y ] = µ and Var(Y ) = σ2. Then, for
any α > 0, P (|Y − µ| ≥ α) ≤ σ2

α2 .

(d) Chernoff Bound (for the Binomial): This will not be on any homework or exams, but is good to
know. It’s stronger than the Chebyshev bound. Suppose X ∼ Binomial(n, p) and µ = np. Then, for any
0 < δ < 1,

• P (X ≥ (1 + δ)µ) ≤ e−
δ2µ
3

• P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2

(e) Weak Law of Large Numbers (WLLN): Let X1, . . . , Xn be iid random variables with common mean µ
and variance σ2. Let Xn = 1

n

∑n
i=1Xi be the sample mean for a sample of size n. Then, for any ε > 0,

limn→∞ P(|X̄n − µ| > ε) = 0. We say that X̄n converges in probability to µ.

(f) Strong Law of Large Numbers (SLLN): Let X1, . . . , Xn be iid random variables with common mean µ
and variance σ2. Let Xn = 1

n

∑n
i=1Xi be the sample mean for a sample of size n. Then, P(limn→∞ X̄n =

µ) = 1. We say that X̄n converges almost surely to µ. The SLLN implies the WLLN, but not vice versa.

(g) Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

(h) Likelihood: Let x1, . . . xn be iid realizations from probability mass function pX (x | θ) (if X discrete) or
density fX (x | θ) (if X continuous), where θ is a parameter (or a vector of parameters). We define the
likelihood function to be the probability of seeing the data.

If X is discrete:

L (x1, . . . , xn | θ) =

n∏
i=1

pX (xi | θ)

If X is continuous:

L (x1, . . . , xn | θ) =
n∏

i=1

fX (xi | θ)

(i) Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter
(or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE = argmax
θ

L (x1, . . . , xn | θ) = argmax
θ

lnL (x1, . . . , xn | θ)
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(j) Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since
the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly
the same as the value that maximizes the log-likelihood.

If X is discrete:

lnL (x1, . . . , xn | θ) =

n∑
i=1

ln pX (xi | θ)

If X is continuous:

lnL (x1, . . . , xn | θ) =
n∑

i=1

ln fX (xi | θ)

(k) Bias: The bias of an estimator θ̂ for a true parameter θ is defined as Bias
(
θ̂, θ

)
= E[θ̂]− θ. An estimator

θ̂ of θ is unbiased iff Bias
(
θ̂, θ

)
= 0, or equivalently E[θ̂] = θ.

(l) Steps to find the maximum likelihood estimator, θ̂:

(a) Find the likelihood and log-likelihood of the data.

(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.

(c) Take the second derivative and show that θ̂ indeed is a maximizer, that partial2L
∂θ2

< 0 at θ̂. Also
ensure that it is the global maximizer: check points of non-differentiability and boundary values.

Bad Computer
Each day, the probability your computer crashes is 10%, independent of every other day. Suppose we want to
evaluate the computer’s performance over the next 100 days.

(a) Let X be the number of crash-free days in the next 100 days. What distribution does X have? Identify
E[X] and Var(X) as well. Write an exact (possibly unsimplified) expression for P(X ≥ 87).

Solution:
X ∼ Binomial(100, 0.9). Hence, E[X] = np = 90 and Var(X) = np(1− p) = 9. Finally,

P(X ≥ 87) =

100∑
k=87

(
100

k

)
(0.9)k(1− 0.9)100−k

(b) Approximate the probability of at least 87 crash-free days out of the next 100 days using the Central Limit
Theorem. Justify why we can use the CLT here.

Solution:
From the previous part, we know that E[X] = 90 and Var(X) = 9.

P(X ≥ 87) = P(86.5 < X < 100.5) = P(
86.5− 90

3
<

X − 90

3
<

100.5− 90

3
)

≈ P(−1.17 <
X − 90

3
< 3.5) ≈ Φ(3.5) + Φ(1.17)− 1 ≈ 0.9998 + 0.8790− 1 = 0.8788

Notice that, if you had used 86.5 < X in place of 86.5 < X < 100.5, your answer would have been nearly
the same, because Φ(3.5) is so close to 1.
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312 Grades
Suppose Professor Karlin loses everyones grades for 312 and decides to make it up by assigning grades randomly
according to the following probability distribution, and hoping the n students wont notice: give an A with
probability 0.5, a B with probability θ, a C with probability 2θ, and an F with probability 0.5 − 3θ. Let
xA be the number of people who received an A, xB the number of people who received a B, etc, where
xA + xB + xC + xF = n. Find the MLE for θ, θ̂.
Solution:

L(x|θ) ∝ 0.5xAθxB (2θ)xC (0.5− 3θ)xF

lnL(x|θ) = xA ln(0.5) + xB ln(θ) + xC ln(2θ) + xF ln(0.5− 3θ)

∂

∂θ
lnL(x|θ) = xB

θ
+

xC
θ

− 3xF
0.5− 3θ

= 0

Solving yields θ̂ = xB+xC
6(xB+xC+xF ) .

Continuous Law of Total Probability Review
(a) Suppose we flip a coin with probability U of heads, where U is equally likely to be one of ΩU =

{0, 1
n ,

2
n , ..., 1} (notice this set has size n + 1). Let H be the event that the coin comes up heads.

What is P(H)?

Solution:
We can use the law of total probability, conditioning on U = k

n for k = 0, ..., n.

P(H) =

n∑
k=0

P(H|U =
k

n
)P(U =

k

n
) =

n∑
k=0

k

n
· 1

n+ 1
=

1

n(n+ 1)

n∑
k=0

k =
1

n(n+ 1)

n(n+ 1)

2
=

1

2

(b) Now suppose U ∼ Uniform(0,1) has the continuous uniform distribution over the interval [0, 1]. What is
P(H)?

Solution:

P(H) =

∫ 1

0
P(H|U = u)fU (u)du =

∫ 1

0
u · 1du =

1

2
[u2]10 =

1

2

(c) Let’s generalize the previous result we just used. Suppose E is an event, and X is a continuous random
variable with density function fX(x). Write an expression for P(E), conditioning on X.

Solution:

P(E) =

∫ ∞

−∞
P(E|X = x)fX(x)dx

Independent Shreds, You Say?
You are given 100 independent samples x1, x2, . . . , x100 from Bernoulli(p), where p is unknown. These 100
samples sum to 30. You would like to estimate the distribution’s parameter p. Give all answers to 3 significant
digits.

(a) What is the maximum likelihood estimator p̂ of p?
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Solution:
Note that Σi∈[n]xi = 30, as given in the problem spec. Therefore, there are 30 1s and 70 0s. Therefore,
we can setup L as follows,

L (x1, . . . , xn | p) = (1− p)70p30

lnL (x1, . . . , xn | p) = 70 ln (1− p) + 30 ln p

∂

∂p
lnL (x1, . . . , xn | p) = − 70

1− p
+

30

p
= 0

30

p̂
=

70

1− p̂

30− 30p̂ = 70p̂

p̂ =
30

100

(b) Is p̂ an unbiased estimator of p?

Solution:

E[p̂] = E

[
1

100

100∑
i=1

xi

]

=
1

100

100∑
i=1

E[xi]

=
1

100
· 100p = p.

so it is unbiased.

What if we lose ?
Suppose 59 percent of voters favor Proposition 600. Use the Normal approximation to estimate the probability
that a random sample of 100 voters will contain:

(a) at most 50 in favor. Mention any assumption that you make.

Solution:
We will make an assumption here. We will assume that the ith person is in favor of the proposition with
probability 59

100 . We define Xi ∼ Bernoulli( 59
100) representing whether the ith person is in favor or not.

We define X =
∑100

i=1Xi representing the number of people who are in favor of the proposition. We can
approximate X by Y ∼ N(100 · 0.59, 100 · 0.242). We need to find P( Y−59√

(24.2)
< 50.5−59√

(24.2)
)(after continuity

correction and standardization) which is equal to Φ(−1.729).

(b) more than 100 voters in favor or fewer than 0 voters in favor (again based on this normal approximation).
Will the probability be non zero?

Solution:
We will use our normal approximation Y from part(a). We are interested in P(Y < −0.5) + P(Y >
100.5)(after continuity correction) which is the same as

P(
Y − 59√

24.2
<

−0.5− 59√
24.2

) + P(
Y − 59√

24.2
>

100.5− 59√
24.2

) = Φ(−12.09) + 1− Φ(8.436)
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. Yes, the probability will be non -zero because the density of the normal distribution is non-zero everywhere.
Note that this result is acceptable because the normal distribution is an approximation.

Y Me?
Let Y1, Y2, ...Yn be i.i.d. random variables with density function

fY (y|σ) =
1

2σ
exp(−|y|

σ
)

.
Find the the MLE for σ in terms of |yi|.
Solution:

L (y1, . . . , yn | σ) =

n∏
i=1

1

2σ
exp(−yi

σ
)

lnL (y1, . . . , yn | σ) =

n∑
i=1

[
− ln 2− lnσ − |yi|

σ

]
∂

∂σ
lnL (y1, . . . , yn | σ) =

n∑
i=1

[
− 1

σ
+

|yi|
σ2

]
= 0

−n

σ̂
+

Σn
i=1|yi|
σ̂2

= 0

σ̂ =
Σn
i=1|yi|
n

It Means Nothing
(a) Suppose x1, x2, . . . , xn are samples from a normal distribution whose mean is known to be zero, but whose

variance is unknown. What is the maximum likelihood estimator for its variance?
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Solution:
Before we begin, we should note that this derivation will have to be with respect to σ2, not σ. Therefore,
we want to analyze the function L (x1, . . . , xn | σ2) = 1

σ
√
2π

exp −(x−µ)2

2σ2 = 1√
2πσ2

exp −(x−µ)2

2σ2 .

L (x1, . . . , xn | σ2) =
1√
2πσ2

exp
−(x− µ)2

2σ2

lnL (x1, . . . , xn | σ2) =
n∑

i=1

− ln
√
2πσ2 − x2i

2σ2

=

n∑
i=1

−1

2
ln 2πσ2 − x2i

2σ2

=
n∑

i=1

−1

2
ln 2π − 1

2
lnσ2 − x2i

2σ2

= −n

2
ln 2π − n

2
lnσ2 − Σn

i=1x
2
i

2σ2

∂

∂σ2
lnL (x1, . . . , xn | σ2) = − n

2σ2
+

Σn
i=1x

2
i

2σ4
= 0

Σn
i=1x

2
i

2σ4
=

n

2σ2

σ2 =
1

n

n∑
i=1

x2i

(b) Suppose the mean is known to be µ but the variance is unknown. How does the maximum likelihood
estimator for the variance differ from the maximum likelihood estimator when both mean and variance are
unknown?

Solution:

1

n

n∑
i=1

(xi − µ)2

vs.
1

n

n∑
i=1

(xi − θ̂1)
2

(The former turns out to be unbiased, the latter biased.)
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