
CSE 312: Foundations of Computing II

Continuous Random Variables 8 Solutions

Review of Main Concepts
(a) Cumulative Distribution Function (cdf): For any random variable (discrete or continuous) X, the

cumulative distribution function is defined as FX (x) = P (X ≤ x). Notice that this function must be
monotonically nondecreasing: if x < y then FX(x) ≤ FX(y), because P(X ≤ x) ≤ P(X ≤ y). Also
notice that since probabilities are between 0 and 1, that 0 ≤ FX(x) ≤ 1 for all x, with limx→−∞ FX(x) = 0
and limx→+∞ FX(x) = 1.

(b) Continuous Random Variable: A continuous random variable X is one for which its cumulative distribu-
tion function FX(x) : R → R is continuous everywhere. A continuous random variable has an uncountably
infinite number of values.

(c) Probability Density Function (pdf or density): Let X be a continuous random variable. Then the
probability density function fX(x) : R → R of X is defined as fX(x) = d

dxFX (x). Turning this around,
it means that FX(x) = P (X ≤ x) =

∫ x
−∞ fX (t) dt. From this, it follows that P(a ≤ X ≤ b) =

FX(b) − FX(a) =
∫ b
a fX(x)dx and that

∫∞
−∞ fX(x)dx = 1. From the fact that FX(x) is monotonically

nondecreasing it follows that fX(x) ≥ 0 for every real number x.

If X is a continuous random variable, note that in general fX (a) 6= P(X = a), since P (X = a) =
FX(a)− FX(a) = 0 for all a. However, the probability that X is close to a is proportional to fX (a): for
small δ, P

(
a− δ

2 < X < a+ δ
2

)
≈ δfX(a).

(d) i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) if they
are independent and have the same probability mass function or probability density function.

(e) Univariate: Discrete to Continuous:

Discrete Continuous
PMF/PDF pX(x) = P(X = x) fX(x) 6= P(X = x) = 0

CDF FX (x) =
∑

t≤x pX(t) FX (x) =
∫ x
−∞ fX (t) dt

Normalization
∑

x pX(x) = 1
∫∞
−∞ fX (x) dx = 1

Expectation E[g(X)] =
∑

x g(x)pX(x) E[g(X)] =
∫∞
−∞ g(x)fX (x) dx

(f) Standardizing: Let X be any random variable (discrete or continuous, not necessarily normal), with
E[X] = µ and V ar(X) = σ2. If we let Y = X−µ

σ , then E[Y ] = 0 and V ar(Y ) = 1.

(g) Closure of the Normal Distribution: Let X ∼ N (µ, σ2). Then, aX + b ∼ N (aµ + b, a2σ2). That is,
linear transformations of normal random variables are still normal.

(h) “Reproductive” Property of Normals: Let X1, . . . , Xn be independent normal random variables with
E[Xi] = µi and V ar(Xi) = σ2

i . Let a1, . . . , an∈ R and b∈ R. Then,

X =

n∑
i=1

(aiXi + b) ∼ N

(
n∑

i=1

(aiµi + b),

n∑
i=1

a2iσ
2
i

)

There’s nothing special about the parameters – the important result here is that the resulting random
variable is still normally distributed.

(i) Multivariate: Discrete to Continuous:
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Discrete Continuous
Joint PMF/PDF pX,Y (x, y) = P(X = x, Y = y) fX,Y (x, y) 6= P(X = x, Y = y)

Joint CDF FX,Y (x, y) =
∑

t≤x,s≤y pX,Y (t, s) FX,Y (x, y) =
∫ x
−∞

∫ y
−∞ fX,Y (t, s) dsdt

Normalization
∑

x,y pX,Y (x, y) = 1
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1

Marginal PMF/PDF pX(x) =
∑

y pX,Y (x, y) fX(x) =
∫∞
−∞ fX,Y (x, y)dy

Expectation E[g(X,Y )] =
∑

x,y g(x, y)pX,Y (x, y) E[g(X,Y )] =
∫∞
−∞

∫∞
−∞ g(x, y)fX,Y (x, y)dxdy

Conditional PMF/PDF pX|Y (x|y) =
pX,Y (x,y)
pY (y) fX|Y (x|y) =

fX,Y (x,y)
fY (y)

Conditional Expectation E[X | Y = y] =
∑

x xpX|Y (x|y) E[X | Y = y] =
∫∞
−∞ xfX|Y (x|y)dx

Independence ∀x, y, pX,Y (x, y) = pX(x)pY (y) ∀x, y, fX,Y (x, y) = fX(x)fY (y)

(j) Law of Total Probability (Continuous): A is an event, and X is a continuous random variable with
density function fX(x).

P(A) =

∫ ∞

−∞
P(A|X = x)fX(x)dx

(k) Law of Total Expectation (Continuous): Y is a random variable, and X is a continuous random
variable with density function fX(x).

E[Y ] =

∫ ∞

−∞
E[Y | X = x] fX(x)dx

Zoo of Continuous Random Variables
(a) Uniform: X ∼ Uniform(a, b) iff X has the following probability density function:

fX (x) =

{
1

b−a if x ∈ [a, b]

0 otherwise

E[X] = a+b
2 and V ar(X) = (b−a)2

12 . This represents each real number from [a, b] to be equally likely.

(b) Exponential: X ∼ Exponential(λ) iff X has the following probability density function:

fX (x) =

{
λe−λx if x ≥ 0
0 otherwise

E[X] = 1
λ and V ar(X) = 1

λ2 . FX (x) = 1 − e−λx for x ≥ 0. The exponential random variable is the
continuous analog of the geometric random variable: it represents the waiting time to the next event,
where λ > 0 is the average number of events per unit time. Note that the exponential measures how
much time passes until the next event (any real number, continuous), whereas the Poisson measures how
many events occur in a unit of time (nonnegative integer, discrete). The exponential random variable X
is memoryless:

for any s, t ≥ 0, P (X > s+ t | X > s) = P(X > t)

The geometric random variable also has this property.

(c) Normal (Gaussian, “bell curve”): X ∼ N (µ, σ2) iff X has the following probability density function:

fX (x) =
1

σ
√
2π

e−
1
2

(x−µ)2

σ2 , x ∈ R

E[X] = µ and V ar(X) = σ2. The “standard normal” random variable is typically denoted Z and has
mean 0 and variance 1: if X ∼ N (µ, σ2), then Z = X−µ

σ ∼ N (0, 1). The CDF has no closed form, but
we denote the CDF of the standard normal as Φ(z) = FZ (z) = P(Z ≤ z). Note from symmetry of the
probability density function about z = 0 that: Φ(−z) = 1− Φ(z).
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Memorylessness of Exponential
Let s, t > 0 be positive real numbers, and X ∼ Exponential(λ). Prove the memoryless property of the exponential
distribution: P(X > s + t|X > s) = P(X > t). (Hint: Use the fact that P(X > x) = 1 − FX(x) = e−λx).
Interpret what this statement is saying. Note that this is also true of the Geometric distribution.
Solution:

P(X > s+ t|X > s) =
P(X > s+ t ∩X > s)

P(X > s)
=

P(X > s+ t)

P(X > s)
=

e−λ(s+t)

e−λs
= e−λt = P(X > t)

This means that, after waiting s units of time, the probability you wait t more units of time is the same as waiting
t units of time from the beginning.

New PDF?
Alex came up with a function that he thinks could represent a probability density function. He defined the
potential pdf for X as f(x) = 1

1+x2 defined on [0,∞). Is this a valid pdf? If not, find a constant c such that
the pdf fX(x) = c

1+x2 is valid. Then find E[X]. (Hints: d
dx(tan

−1 x) = 1
1+x2 , tan π

2 = ∞, and tan 0 = 0.)
Solution: ∫ ∞

0

c

1 + x2
dx = c tan−1 x |∞0 = c

(π
2
− 0
)
= 1

so c = 2/π.

E[X] =

∫ ∞

0

cx

1 + x2
dx =

2

π

∫ ∞

0

x

1 + x2
dx =

1

π
ln(1 + x2) |∞0 = ∞

Transformations
Suppose X ∼ Uniform(0, 1) has the continuous uniform distribution on (0, 1). Let Y = − 1

λ logX for some
λ > 0.

(a) What is ΩY ?

Solution:
ΩY = (0,∞) because log(x) ∈ (−∞, 0) for x ∈ (0, 1).

(b) First write down FX(x) for x ∈ (0, 1). Then, find FY (y) on ΩY .

Solution:
FX(x) = x for x ∈ (0, 1). Let y ∈ ΩY .

FY (y) = P(Y ≤ y) = P(− 1

λ
logX ≤ y) = P(logX ≥ −λy) = P(X ≥ e−λy) = 1− P(X < e−λy)

Then, because e−λy ∈ (0, 1)
= 1− FX(e−λy) = 1− e−λy

(c) Now find fY (y) on ΩY . What distribution does Y have?

Solution:

fY (y) = F ′
Y (y) = λe−λy

Hence, Y ∼ Exponential(λ).
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Uniform Distribution on the Circle
Consider the closed unit circle of radius r, S = {(x, y) : x2 + y2 ≤ r}. Suppose we throw a dart onto this
circle and are guaranteed to hit it. However, we would like the probability of hitting any point equally likely.
Let (X,Y ) be the coordinates of the circle that the dart hits. Find their joint density fX,Y (x, y) and be sure
to specify the values for all (x, y) ∈ R2. Are X and Y independent? Are the marginal distributions fX(x) and
fY (y) uniform on [−r, r]?
Solution:

fX,Y (x, y) =

{
1

πr2
if (x, y) ∈ S

0 otherwise

X and Y cannot be independent since their range fails to be a rectangle (ΩX,Y = S 6= [−1, 1] × [−1, 1] =
ΩX × ΩY ). The marginal distributions are not uniform; they are more likely to be close to the center than the
edges.

A square dartboard ?
You throw a dart at an s× s square dartboard. The goal of this game is to get the dart to land as close to the
lower left corner of the dartboard as possible. However, your aim is such that the dart is equally likely to land
at any point on the dartboard. Let random variable X be the length of the side of the smallest square B in the
lower left corner of the dartboard that contains the point where the dart lands. That is, the lower left corner of
B must be the same point as the lower left corner of the dartboard, and the dart lands somewhere along the
upper or right edge of B. For X, find the CDF, PDF, E[X], and V ar(X).
Solution:

FX(x) =


0, if x < 0
x2/s2, if 0 ≤ x ≤ s
1, if x > s

fX(x) =
d

dx
FX(x) =

{
2x/s2, if 0 ≤ x ≤ s
0, otherwise

E[X] =

∫ s

0
xfX(x)dx =

∫ s

0

2x2

s2
dx =

2

s2

∫ s

0
x2dx =

2

3s2
[
x3
]s
0
=

2

3
s

E
[
X2
]
=

∫ s

0
x2fX(x)dx =

∫ s

0

2x3

s2
dx =

2

s2

∫ s

0
x3dx =

1

2s2
[
x4
]s
0
=

1

2
s2

Var(X) = E
[
X2
]
− (E[X])2 =

1

2
s2 −

(
2

3
s

)2

=
1

18
s2

For this section, we expect to end here (or before!). The rest of these problems can be done at home
for extra practice, or if you finish 2-6 early. Solutions will be posted.

Uniform2
Alex decided he wanted to create a “new” type of distribution that will be famous, but he needs some help.
He knows he wants it to be continuous and have uniform density, but he needs help working out some of the
details. We’ll denote a random variable X having the “Uniform-2” distribution as X ∼ Uniform2(a, b, c, d), where
a < b < c < d. We want the density to be non-zero in [a, b] and [c, d], and zero everywhere else. Anywhere the
density is non-zero, it must be equal to the same constant.

(a) Find the probability density function, fX(x). Be sure to specify the values it takes on for every point in
(−∞,∞). (Hint: use a piecewise definition).
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Solution:

fX (x) =

{ 1
(b−a)+(d−c) , x ∈ [a, b] ∪ [c, d]

0, otherwise

(b) Find the cumulative distribution function, FX(x). Be sure to specify the values it takes on for every point
in (−∞,∞). (Hint: use a piecewise definition).

Solution:

FX (x) =



0, x ∈ (−∞, a)

(x−a)
(b−a)+(d−c) , x ∈ [a, b)

(b−a)
(b−a)+(d−c) , x ∈ [b, c)

(b−a)+(x−c)
(b−a)+(d−c) , x ∈ [c, d)

1, x ∈ [d,∞)

Continuous Law of Total Probability?
In this exercise, we will extend the law of total probability to the continuous case.

(a) Suppose we flip a coin with probability U of heads, where U is equally likely to be one of ΩU =
{0, 1

n ,
2
n , ..., 1} (notice this set has size n + 1). Let H be the event that the coin comes up heads.

What is P(H)?

Solution:
We can use the law of total probability, conditioning on U = k

n for k = 0, ..., n.

P(H) =

n∑
k=0

P(H|U =
k

n
)P(U =

k

n
) =

n∑
k=0

k

n
· 1

n+ 1
=

1

n(n+ 1)

n∑
k=0

k =
1

n(n+ 1)

n(n+ 1)

2
=

1

2

(b) Now suppose U ∼ Uniform(0,1) has the continuous uniform distribution over the interval [0, 1]. Extend
the law of total probability to work for this continuous case. (Hint: you may have an integral in your
answer instead of a sum).

Solution:

P(H) =

∫ 1

0
P(H|U = u)fU (u)du =

∫ 1

0
u · 1du =

1

2
[u2]10 =

1

2

(c) Let’s generalize the previous result we just used. Suppose E is an event, and X is a continuous random
variable with density function fX(x). Write an expression for P(E), conditioning on X.

Solution:

P(E) =

∫ ∞

−∞
P(E|X = x)fX(x)dx
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Continuous Law of Total Expectation?
In this exercise, we will extend the law of total expectation to the continuous case.

(a) Suppose we have fixed a u ∈ (0, 1). We keep drawing independently from the continuous uniform dis-
tribution Uniform(0, 1) until we draw a number less than u. What is the expected number of times you
draw?

Solution:
Let X be the number of draws. Then X ∼ Geometric(u) since the probability a uniform rv between 0 and
1 is less than u is exactly u. Hence the expectation is 1

u .

(b) Suppose we draw from U ∼ Uniform(0, 1). We keep drawing independently from the continuous uniform
distribution Uniform(0, 1) until we draw a number less than U . What is the expected number of times
you draw? Note that this is different from part (a) since U is random and not fixed. Hint: Consider
conditioning on U = u and extend the law of total expectation from the discrete case.

Solution:

E[X] =

∫ 1

0
E[X | U = u] fU (u)du =

∫ 1

0

1

u
du = ∞

(c) Let X be the number of draws in the previous part, and let Y (simultaneously) be the number of draws
until the first time we draw a number greater than the initial draw (same as X, but X is the number of
draws until we get less than the initial draw). By symmetry, E[X] = E[Y ]. Let Z = min{X,Y }. Explain
what Z is in English. What is E[Z]? Is it equal to min{E[X] ,E[Y ]}?

Solution:
Z is the number of draws until we get a number greater than or less than the initial draw. The first draw
after the initial draw is guaranteed to be greater than or less than the first (since with probability 0 they are
equal). Hence min{X,Y } = 1 with probability 1, and E[Z] = 1 6= ∞ = min{E[X] ,E[Y ]}. Interesting
right? We have E[X] = E[Y ] = ∞, yet min{X,Y } = 1 w.p. 1.

(d) In part (b), it is tempting and intuitive to think that the answer is simply 2, since we expect the first draw
to be 1

2 , and hence expect two draws. However, the probability we get between [0, 0.01] is one percent,
but the expectation of waiting is 100. The probability we get between [0, 0.001] is extremely small, but the
expectation of waiting is much higher. This is why the expectation was infinite. Now, find the flaw in the
following argument which defends the intuitive yet incorrect answer. With probability 1/2, the first draw
is less than the initial draw. With probability 1/2, the second draw is less than the initial draw. And so
on. The draws are stated to be independent of each other. Hence X ∼ Geometric(1/2) and E[X] = 2.

Solution:
The flaw is the independence: in the standard coin flipping case, knowing whether the first flip is tails
doesn’t change the probability of the second being heads of tails. Knowing the first hundred flips are tails
doesn’t change the probability of the next being tails. However, knowing that the first draw is not less
than the initial somewhat makes us believe that the initial draw was a bit larger than 1/2. Knowing that
the first hundred draws are not less than the initial makes us believe that the initial draw is very close to
1 rather than its expectation of 1/2.

(e) Let’s generalize the previous result we just used. Suppose Y is a random variable, and X is a continuous
random variable with density function fX(x). Write an expression for E[Y ], conditioning on X.
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Solution:

E[Y ] =

∫ ∞

−∞
E[Y | X = x] fX(x)dx

Convolutions
Suppose Z = X +Y , where X⊥Y . Z is called the convolution of two random variables. If X,Y, Z are discrete,

pZ (z) = P(X + Y = z) =
∑
x

P(X = x ∩ Y = z − x) =
∑
x

pX (x) pY (z − x)

If X,Y, Z are continuous,

FZ (z) = P(X + Y ≤ z) =

∫ ∞

−∞
P(Y ≤ z −X|X = x)fX(x)dx =

∫ ∞

−∞
FY (z − x)fX(x)dx

Suppose X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2).

(a) Find an expression for P(X1 < 2X2) using a similar idea to convolution, in terms of FX1 , FX2 , fX1 , fX2.
(Your answer will be in the form of a single integral, and requires no calculations – do not evaluate it).

Solution:
We use the continuous version of the “Law of Total Probability” to integrate over all possible values of X2.
Take the probability that X1 < 2X2 given that value of X2, times the density of X2 at that value.

P(X1 < 2X2) =

∫ ∞

−∞
P(X1 < 2X2|X2 = x2)fX2(x2)dx2 =

∫ ∞

−∞
FX1 (2x2) fX2 (x2) dx2

(b) Find s, where Φ(s) = P(X1 < 2X2) using the fact that linear combinations of independent normal random
variables are still normal.

Solution:
Let X3 = X1 − 2X2, so that X3 ∼ N (µ1 − 2µ2, σ

2
1 + 4σ2

2) (by the reproductive property of normal
distributions)

P(X1 < 2X2) = P(X1 − 2X2 < 0) = P(X3 < 0) = P(
X3 − (µ1 − 2µ2)√

σ2
1 + 4σ2

2

<
0− (µ1 − 2µ2)√

σ2
1 + 4σ2

2

)

= P(Z <
2µ2 − µ1√
σ2
1 + 4σ2

2

) = Φ

(
2µ2 − µ1√
σ2
1 + 4σ2

2

)
→ s =

2µ2 − µ1√
σ2
1 + 4σ2

2
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