CSE 312: Foundations of Computing II

Section 1: Combinatorics

0. Review of Main Concepts

(a) Product Rule: Suppose events $A_1, ..., A_n$ each have $m_1, ... m_n$ possible outcomes, respectively. Then there are $m_1 \cdot m_2 \cdot m_3 \cdots m_n = \prod_{i=1}^{n} m_i$ possible outcomes overall.

(b) Number of ways to order n distinct objects: $n! = n \cdot (n - 1) \cdot 3 \cdot 2 \cdot 1$

(c) Number of ways to select from n distinct objects:

(a) Permutations (number of ways to linearly arrange k objects out of n distinct objects, when the order of the k objects matters):

$$P(n, k) = \frac{n!}{(n-k)!}$$

(b) Combinations (number of ways to choose k objects out of n distinct objects, when the order of the k objects does not matter):

$$\frac{n!}{k!(n-k)!} = \binom{n}{k} = C(n, k)$$

(d) Multinomial coefficients: Suppose there are n objects, but only k are distinct, with $k \leq n$. (For example, “godoggy” has $n = 7$ objects (characters) but only $k = 4$ are distinct: (g, o, d, y)). Let n_i be the number of times object i appears, for $i \in \{1, 2, \ldots, k\}$. (For example, $(3, 2, 1, 1)$, continuing the “godoggy” example.) The number of distinct ways to arrange the n objects is:

$$\frac{n!}{n_1!n_2!\cdots n_k!} = \binom{n}{n_1, n_2, \ldots, n_k}$$

(e) Pigeonhole Principle: Suppose there are $n - 1$ pigeon holes and n pigeons, and each pigeon goes into a hole. Then, there must be some hole that has two pigeons in it. This simple observation is surprisingly useful in computer science.

We can put this more generally as: if there are n pigeons and k holes, and $n > k$, some hole has at least $\lceil \frac{n}{k} \rceil$ pigeons.

For the pigeon haters out there, we can also express this as “we have n holes and $n - 1$ pigeons...”. Pick your favorite.

1. Birthday Cake

A chef is preparing desserts for the week, starting on a Sunday. On each day, only one of five desserts (apple pie, cherry pie, strawberry pie, pineapple pie, and cake) may be served. On Thursday there is a birthday, so cake must be served that day. On no two consecutive days can the chef serve the same dessert. How many dessert menus are there for the week?

2. HBCDEFGA

How many ways are there to permute the 8 letters A, B, C, D, E, F, G, H so that A is not at the beginning and H is not at the end?
3. Full Class
There are 40 seats and 40 students in a classroom. Suppose that the front row contains 10 seats, and there are 5 students who must sit in the front row in order to see the board clearly. How many seating arrangements are possible with this restriction?

4. Friendly Proofs
First, assume that if Alice is friends with Bob, Bob must also be friends with Alice. In other words, there are no unrequited friendships.

Given this, prove that in any group of people (of size at least 2), there are two people with the same number of friends in the group.

5. Paired Finals
Suppose you are to take the CSE 312 final in pairs. There are 100 students in the class and 8 TAs, so 8 lucky students will get to pair up with a TA. Each TA must take the exam with some student, but two TAs cannot take the exam together. How many ways can they pair up?

6. Escape the Professor
There are 6 security professors and 7 theory professors taking part in an escape room. If 4 security professors and 4 theory professors are chosen and paired off, how many pairings are possible?

For this section, we expect to end here (or before!). The rest of these problems can be done at home for extra practice, or if you finish 1-6 early. Solutions will be posted.

7. Photographs
Suppose that 8 people, including you and a friend, line up for a picture. In how many ways can the photographer organize the line if she wants to have fewer than 2 people between you and your friend?

8. Rabbits!
Rabbits Peter and Pauline have three offspring: Flopsie, Mopsie, and Cotton-tail. These five rabbits are to be distributed to four different pet stores so that no store gets both a parent and a child. It is not required that every store gets a rabbit. In how many different ways can this be done?

9. Seating
How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if . . .
 (a) . . . all couples are to get adjacent seats?
 (b) . . . the seats are assigned arbitrarily, except that one couple insists on not sitting in adjacent seats?

10. Weird Card Game
In how many ways can a pack of fifty-two cards be dealt to thirteen players, four to each, so that every player has one card of each suit?

11. Extended Family Portrait
A group of n families, each with m members, are to be lined up for a photograph. In how many ways can the nm people be arranged if members of a family must stay together?