Midterm Review

coverage

everything in text chapters 1-2 (excl 2.6), slides & homework pre-exam is included, except as noted below.

mechanics

closed book; 1 page of notes (8.5 x 11, ≤ 2 sides, handwritten)

I'm more interested in setup and method than in numerical answers, so concentrate on giving a clear approach, perhaps including a terse English outline of your reasoning.

Corollary: calculators are probably irrelevant, allowed. No smartphones, tablets or computers

chapter 1: combinatorial analysis

counting principle (product rule)

permutations

combinations

in-/distinguishable objects

binomial coefficients

binomial theorem

partitions & multinomial coefficients

inclusion/exclusion

pigeon hole principle

chapter 1: axioms of probability

sample spaces, outcomes & events axioms

complements, Venn diagrams, deMorgan, mutually exclusive events, etc.

equally likely outcomes

chapter 1: conditional probability and independence

conditional probability chain rule, aka multiplication rule total probability theorem Bayes rule yes, learn the formula odds (and prior/posterior odds form of Bayes rule) independence conditional independence gambler's ruin

chapter 2: random variables

```
discrete random variables
probability mass function (pmf)
expectation of X
expectation of g(X) (i.e., a function of an r.v.)
linearity: expectation of X+Y and aX+b
variance
cumulative distribution function (cdf)
 cdf as sum of pmf from -∞
independence; joint and marginal distributions
important examples:
                                      know pmf, mean, variance of these
 uniform, bernoulli, binomial, geometric, poisson
```

some important (discrete) distributions

Name	PMF	E[k]	$E[k^2]$	σ^2
$\overline{\text{Uniform}(a,b)}$	$f(k) = \frac{1}{(b-a+1)}, k = a, a+1, \dots, b$	$\frac{a+b}{2}$		$\frac{\sigma^2}{\frac{(b-a+1)^2-1}{12}}$
Bernoulli(p)	$f(k) = \begin{cases} 1 - p & \text{if } k = 0\\ p & \text{if } k = 1 \end{cases}$	p	p	p(1-p)
Binomial(p, n)	$f(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, \dots, n$	np		np(1-p)
$Poisson(\lambda)$	$f(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \dots$	λ	$\lambda(\lambda+1)$	λ
Geometric(p)	$f(k) = p(1-p)^{k-1}, k = 1, 2, \dots$	$\frac{1}{p}$	$\frac{2-p}{p^2}$	$\frac{1-p}{p^2}$
Hypergeometric (n, N, m)	$f(k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, N$	$\frac{nm}{N}$		$\frac{nm}{N} \left(\frac{(n-1)(m-1)}{N-1} + 1 - \frac{nm}{N} \right)$

See also the summary in B&T following pg 528

Calculus is a prereq, but I'd suggest the most important parts to brush up on are:

```
taylor's series for e^x sum of geometric series: \Sigma_{i\geq 0} x^i = 1/(1-x) (0\leq x < 1) Tip: multiply both sides by (1-x) \Sigma_{i\geq 1} ix^{i-1} = 1/(1-x)^2 Tip1: slide # ~13 in "random variables" lecture notes, or text Tip2: if it were \Sigma_{i\geq 1} ix^{i+1}, say, you could convert to the above form by
```

integrals & derivatives of polynomials, e^x; chain rule for derivatives; integration by parts

dividing by x² etc.; 1st few terms may be exceptions

Good Luck!