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tail bounds 

For a random variable X, the tails of X are the parts 
of the PMF/density that are “far” from its mean. 
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tail bounds 

Often, we want to bound the probability that a 
random variable X is “extreme.”  Perhaps:
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applications of tail bounds 

If we know the expected advertising cost is 
$1500/day, what’s the probability we go over 
budget? By a factor of 4?

I only expect 10,000 homeowners to default on 
their mortgages. What’s the probability that 
1,000,000 homeowners default?

We know that randomized quicksort runs in �
O(n log n) expected time.  But what’s the 
probability that it takes more than 10 n log(n) 
steps?  More than n1.5 steps?
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the lake wobegon fallacy 

“Lake Wobegon, Minnesota, where 
all the women are strong, �

all the men are good looking, �
and �

all the children are above average…”
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Markov’s inequality 

In general, an arbitrary random variable could have 
very bad behavior.  But knowledge is power; if we 
know something, can we bound the badness?

Suppose we know that X is always non-negative.

Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have

Corr: 
                P(X ≥ αE[X]) ≤ 1/α
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Markov’s inequality 

Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have

Example: if X = daily advertising expenses and

       E[X] = 1500
Then, by Markov’s inequality,
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Markov’s inequality 

Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have

Proof:

E[X] = Σx xP(x) 

        = Σx<α xP(x) + Σx≥α xP(x)

        ≥        0          + Σx≥ααP(x)

        = αP(X ≥ α)
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Chebyshev’s inequality 

If we know more about a random variable, we 
can often use that to get better tail bounds.

Suppose we also know the variance.

Theorem:  If Y is an arbitrary random variable 
with E[Y] = µ,  then, for any α > 0,
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Chebyshev’s inequality 

Theorem:  If Y is an arbitrary random variable 
with µ = E[Y], then, for any α > 0,

X is non-negative, so we can apply Markov’s 
inequality:

Proof: 
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Chebyshev’s inequality 

Theorem:  If  Y is an arbitrary random 
variable with µ = E[Y], then, for any α > 0,

X is non-negative, so we can apply Markov’s 
inequality:

Proof: 
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Chebyshev’s inequality 

E.g., suppose:
Y = money spent on advertising in a day
E[Y] = 1500

 Var[Y] = 5002  (i.e.  SD[Y] = 500)
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Chebyshev’s inequality 

Theorem:  If Y is an arbitrary random variable 
with µ = E[Y],  then, for any α > 0,

Corr: If

Then:
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super strong tail bounds 

 Y ~ Bin(15000, 0.1)
µ = E[Y] = 1500, σ = √Var(Y) = 36.7

1. P(Y ≥ 6000) = P(Y ≥ 4µ) ≤ ¼ (Markov)
2. P(Y ≥ 6000) = P(Y-µ≥ 122σ) ≤ 7x10-5 (Chebyshev)
3. P(Y ≥ 6000) << 10-1600 (Y ~ Poi(1500))

4. The exact (binomial) value is ≈ 4 x 10-2031

1,2,5 are easy calcs; 3 & 4 are not (underflow, etc.)

5. P(Y ≥ 6000) ≲ 10-1945 (Chernoff, below; easy)
26



Chernoff bounds 

Suppose X ~ Bin(n,p)
µ = E[X] = pn

Chernoff bound:
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router buffers 
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router buffers 
Model: n = 100,000 computers each independently send a 
packet with probability p = 0.01 each second.  The router 
processes its buffer every second.  How many packet buffers so 
that router drops a packet:
•  Never?
    100,000
•  With probability ≈1/2, every second?
    ≈1000  (P(X>E[X]) ≈ ½ when X ~ Binomial(100000, .01))

•  With probability at most 10-6, every hour?
    1257
•  With probability at most 10-6, every year?
    1305
•  With probability at most 10-6, since Big Bang?
    1404
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Exercise: How would you formulate the exact answer to this problem in terms 
of binomial probabilities?  Can you get a numerical answer? 



X ~ Bin(100,000, 0.01),   µ = E[X] = 1000
Let p = probability of buffer overflow in 1 second
By the Chernoff bound
                   p =

Overflow probability in n seconds �
    = 1-(1-p)n ≤ np ≤ n exp(- δ2µ/3), 
which is ≤ ε provided δ ≥ √(3/µ)ln(n/ε).
  For ε = 10-6 per hour:  δ ≈ .257, buffers = 1257
  For ε = 10-6 per year:  δ ≈ .305, buffers = 1305
  For ε = 10-6 per 15BY:  δ ≈ .404, buffers = 1404

router buffers 
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summary 

Tail bounds – bound probabilities of extreme events
Important, e.g.,  for “risk management” applications
Three (of many):

Markov: P(X ≥ kµ) ≤ 1/k (weak, but general; only need X ≥ 0 and µ)

Chebyshev: P(|X-µ| ≥ kσ) ≤ 1/k2 (often stronger, but also need σ)

Chernoff: various forms, depending on underlying distribution;  
usually 1/exponential, vs 1/polynomial above

Generally, more assumptions/knowledge ⇒ better bounds

“Better” than exact distribution?  
Maybe, e.g. if latter is unknown or mathematically messy

“Better” than, e.g., “Poisson approx to Binomial”?
Maybe, e.g. if you need rigorously “≤” rather than just “≈”
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