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Conditional Probability 
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conditional probability - intuition

Roll one fair die.  
What is the probability that the outcome is 5?

1/6  (5 is one of 6 equally likely outcomes)  

What is the probability that the outcome is 5 given that the 
outcome is an even number?

0     (5 isn’t even)  

What is the probability that the outcome is 5 given that the 
outcome is an odd number?

1/3  (3 odd outcomes are equally likely; 5 is one of  them)  

Formal definitions and derivations below
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conditional probability - partial definition

S

S
F

F

Conditional probability of E given F:  probability that E occurs given 
that F has occurred.

 “Conditioning on F”
 Written as P(E|F)
 Means “P(E has happened, given F observed)”

Sample space S reduced to those  
elements consistent with F (i.e. S ∩ F)

Event space E reduced to those  
elements consistent with F (i.e. E ∩ F)

 With equally likely outcomes:
E

E

4



dice

Roll one fair die.  What is the probability that the outcome is 
5 given that it’s odd?

E = {5}       event that roll is 5
F = {1, 3, 5} event that roll is odd

Way 1 (from counting):
   P(E | F) = |EF| / |F| = |E| / |F| = 1/3

Way 2 (from probabilities):
   P(E | F) = P(EF) / P(F) = P(E) / P(F) = (1/6) / (1/2)  = 1/3

Way 3 (from restricted sample space):
All outcomes are equally likely.  Knowing F occurred doesn’t 
distort relative likelihoods of outcomes within F, so they remain 
equally likely.  There are only 3 of them, one being in E, so 

   P(E | F) = 1/3
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dice

Roll a fair die.  What is the probability that the outcome is 5?
E = {5} (event that roll is 5)  S = {1,2, 3, 4, 5, 6}  sample space

     P(E) = |E| / |S| = 1/6

What is the prob. that the outcome is 5 given that it’s even?
G = {2, 4, 6} 
Way 1 (counting):
   P(E | G) = |EG| / |G| = |∅| / |G| = 0/3 = 0

Way 2 (probabilities):
   P(E | G) = P(EG) / P(G) = P(∅) / P(G) = (0) / (1/2)  = 0

Way 3 (restricted sample space):
Outcomes are equally likely.  Knowing G occurred doesn’t distort relative 
likelihoods of outcomes within G; they remain equally likely.  There are 3 of 
them, none being in E, so P(E | G) = 0/3
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coin flipping

 Suppose you flip two coins & all outcomes are equally likely.
 What is the probability that both flips land on heads if…
 • The first flip lands on heads?

 Let B = {HH} and F = {HH, HT}
 P(B|F) = P(BF)/P(F) = P({HH})/P({HH, HT})
         = (1/4)/(2/4) = 1/2

  • At least one of the two flips lands on heads?
 Let A = {HH,  HT,  TH}
 P(B|A) = |BA|/|A| = 1/3

 • At least one of the two flips lands on tails?
 Let G = {TH,  HT,  TT}
 P(B|G) = P(BG)/P(G) = P(∅)/P(G) = 0/P(G) = 0
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slicing up the spam
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slicing up the spam

24 emails are sent, 6 each to 4 users.
10 of the 24 emails are spam.
All possible outcomes equally likely. 

E  = user #1 receives 3 spam emails

What is P(E) ?
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slicing up the spam

24 emails are sent, 6 each to 4 users.
10 of the 24 emails are spam.
All possible outcomes equally likely

E  = user #1 receives 3 spam emails
F  = user #2 receives 6 spam emails

What is P(E|F) ? 
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[and do you expect it to be 
 larger than P(E), or smaller?]



slicing up the spam

24 emails are sent, 6 each to 4 users.
10 of the 24 emails are spam.
All possible outcomes equally likely

E  = user #1 receives 3 spam emails
F  = user #2 receives 6 spam emails
G = user #3 receives 5 spam emails

What is P(G|F) ?
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conditional probability - general definition

General defn:                                    where P(F) > 0

Holds even when outcomes are not equally likely.

Example: S = {# of heads in 2 coin flips} = {0, 1, 2}
NOT equally likely outcomes: P(0)=P(2)=1/4, P(1)=1/2

Q.  What is prob of 2 heads (E) given at least 1 head (F)?
A.  P(EF)/P(F) = P(E)/P(F) = (1/4)/(1/4+1/2) = 1/3

Same as earlier formulation of this example (of course!)
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The Chain Rule 
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conditional probability: the chain rule

General defn:                                    where P(F) > 0

Holds even when outcomes are not equally likely.

What if P(F) = 0?
P(E|F) undefined: (you can’t observe the impossible)

Implies (when P(F)>0):  P(EF) = P(E|F) P(F)       (“the chain rule”)

General definition of Chain Rule:

14
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chain rule example - piling cards
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piling cards

Deck of 52 cards randomly divided into 4 piles
13 cards per pile
Compute P(each pile contains an ace)

Solution:
E1 = {      in any one pile }

E2 = {       &       in different piles } 

E3 = {                   in different piles }

E4 = { all four aces in different piles }

Compute P(E1 E2 E3 E4)
16



piling cards

E1 = {      in any one pile }

E2 = {      &       in different piles } 

E3 = {                   in different piles }

E4 = { all four aces in different piles }

P(E1E2E3E4)
= P(E1) P(E2|E1) P(E3|E1E2) P(E4|E1E2E3)
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E1 = {      in any one pile }  

E2 = {      &       in different piles }  

E3 = {                   in different piles }

E4 = { all four aces in different piles }

P(E1E2E3E4) = P(E1) P(E2|E1) P(E3|E1E2) P(E4|E1E2E3)

P(E1)      = 52/52 = 1 (A♥ can go anywhere)

P(E2|E1) = 39/51 (39 of 51 slots not in A♥ pile)

P(E3|E1E2 ) = 26/50 (26 not in A♥, A♠ piles)

P(E4|E1E2E3) = 13/49 (13 not in A♥, A♠, A♦ piles)

piling cards

18

A conceptual trick: what’s 
randomized?
a) randomize cards, deal 

sequentially into 4 piles
b) sort cards, aces first, deal 

randomly into empty 
slots among 4 piles.



piling cards

E1 = {      in any one pile }

E2 = {      &       in different piles } 

E3 = {                   in different piles }

E4 = { all four aces in different piles }

P(E1E2E3E4)

= P(E1) P(E2|E1) P(E3|E1E2) P(E4|E1E2E3)

= (52/52)•(39/51)•(26/50)•(13/49)

≈ 0.105
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Conditional Probability is Probability 
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conditional probability is probability

“P( - | F )” is a probability law, i.e., satisfies the 3 axioms  

Proof:
the idea is simple–the sample space contracts to F; dividing all 
(unconditional) probabilities by P(F) correspondingly re-
normalizes the probability measure; additivity, etc., inherited  
– see text for details; better yet, try it!  

Ex: P(A∪B)    ≤ P(A)   + P(B)
∴   P(A∪B|F) ≤ P(A|F) + P(B|F)  

Ex: P(A)    = 1-P(AC)
∴   P(A|F) = 1-P(AC|F)  

etc.
21
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Another Example
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sending bit strings
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sending bit strings

Bit string with m 1’s and n 0’s sent on the network
All distinct arrangements of bits equally likely
E = first bit received is a 0
F = k of first r bits received are 0’s

What’s P(E|F)?
Solution 1 (“restricted sample space”):

Observe:
  P(E|F) = P(picking one of k 0’s out of r bits)
So:
  P(E|F) = k/r
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sending bit strings

Bit string with m 1’s and n 0’s sent on the network
All distinct arrangements of bits equally likely
E = first bit received is a 0
F = k of first r bits received are 0’s

What’s P(E|F)?
Solution 2 (counting):
    EF = { (n+m)-bit strings | 1st bit = 0 & (k-1)0’s in the next (r-1) }

25
One of the many binomial identities



sending bit strings

Bit string with m 1’s and n 0’s sent on the network
All distinct arrangements of bits equally likely
E = first bit received is a 0
F = k of first r bits received are 0’s

What’s P(E|F)?
Solution 3 (more fun with conditioning):
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Above eqns, 
plus the same 

binomial 
identity twice.A generally useful trick:  

Reversing conditioning (more to come)



Law of  Total Probability
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law of  total probability

E and F are events in the sample space S

E = EF ∪ EFc

EF ∩ EFc = ∅ 

⇒ P(E) = P(EF) + P(EFc)

S

E                          F       

28
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law of  total probability

P(E) = P(EF) + P(EFc)
       = P(E|F) P(F) + P(E|Fc) P(Fc)
       = P(E|F) P(F) + P(E|Fc) (1-P(F))  
 

More generally, if F1, F2, ..., Fn partition S (mutually exclusive, 

∪i Fi = S, P(Fi)>0), then  

P(E) = ∑i P(E|Fi) P(Fi)  
 

(Analogous to reasoning by cases; both are very handy.)

weighted average, 
conditioned on event 
F happening or not.

29

weighted average, 
conditioned on which 

event Fi happened

BT p. 28



law of  total probability–example

Sally has 1 elective left to take: either Phys or Chem.  She 
will get an A with probability 3/4 in Phys, with prob 3/5 in 
Chem.  She flips a coin to decide which to take.   

What is the probability that she gets an A?

Phys, Chem partition her options (mutually exclusive, exhaustive)

P(A) = P(A ∩ Phys) + P(A ∩ Chem)

       = P(A|Phys)P(Phys) + P(A|Chem)P(Chem)
       = (3/4)(1/2)+(3/5)(1/2)
       = 27/40

Note that conditional probability was a means to an end in this example, not the goal itself.  
One reason conditional probability is important is that this is a common scenario: break a 
complex problem into simpler cases.
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Example: Gambler’s Ruin
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2 Gamblers:  Alice & Bob.  
A has i dollars; B has (N-i)
Flip a coin.  Heads – A wins $1; Tails – B wins $1
Repeat until A or B has all N dollars
What is P(A wins)?

Let Ei = event that A wins starting with $i
Approach: Condition on 1st flip

gamblers ruin

32

nice example of the utility of 
conditioning: future decomposed 
into two crisp cases instead of 
being a blurred superposition 

thereof 

aka “Drunkard’s Walk”

0            i                          N

BT pg. 63

How does pi 
vary with i?



Bayes Theorem 
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Bayes Theorem

34

Rev. Thomas Bayes c. 1701-1761

Probability of 
drawing 3 red 
balls, given 3 in 

urn ?

Probability of 3 
red balls in urn, 
given that I drew 

three?

w = ??
r = ??

w = 3
r = 3

6 balls in an urn,  
some red, some white 

BT p. 1.4
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http://www.amazon.com/Theory-That-
Would-Not-Die/dp/0300188226/

ISBN-13: 978-0300188226

Yale University Press, 2011



“When Microsoft Senior Vice President  
[later CEO] Steve Ballmer first heard his company was  
                                planning a huge investment in an  
                                Internet service offering… he went  
                                to Chairman Bill Gates with his  
                                concerns…

Bayes Theorem

“Improbable Inspiration:  The future  
of software may lie in the obscure 
theories of an 18th century cleric 
named Thomas Bayes”
Los Angeles Times (October 28, 1996)
By Leslie Helm, Times Staff Writer  

Gates began discussing the critical role 
of “Bayesian” systems…”

source: http://www.ar-tiste.com/latimes_oct-96.html



Most common form:  
 
 

Expanded form (using law of total probability):

 
 
 
Proof:

Bayes Theorem

37



Most common form:  
 
 

Expanded form (using law of total probability):

Bayes Theorem

Why it’s important:
Reverse conditioning
P( model | data ) ~ P( data | model )
Combine new evidence (E) with prior belief (P(F))
Posterior vs prior

38



w = ??
r = ??

Bayes Theorem

prior = 3/4 ;  
posterior = 3/23

An urn contains 6 balls, either 3 red + 3 white or all 6 red.  
You draw 3; all are red.
Did urn have only 3 red?

Can’t tell!

Suppose it was 3 + 3 with probability p=3/4.
Did urn have only 3 red?

M = urn has 3 red + 3 white
D = I drew 3 red



simple spam detection

Say that 60% of email is spam
90% of spam has a forged header
20% of non-spam has a forged header
Let F = message contains a forged header
Let J = message is spam

What is P(J|F) ?

Solution:

40

prior = 60%   
posterior = 87%



simple spam detection

Say that 60% of email is spam
10% of spam has the word “Viagra”
1% of non-spam has the word “Viagra”
Let V = message contains the word “Viagra”
Let J = message is spam

What is P(J|V) ?

Solution:

41

prior = 60%   
posterior = 94% 



Child is born with (A,a) gene pair (event BA,a)
 Mother has (A,A) gene pair
 Two possible fathers:  M1 = (a,a),  M2 = (a,A)
 P(M1) = p,  P(M2) = 1-p

What is P(M1 | BA,a) ?

Solution:  
 
 
 
 
 
 

I.e., the given data about child raises probability that M1 is father

DNA paternity testing

42

Exercises:
  What if M2 were (A,A)?   
  What if child were (A,A)?

E.g.,  
 1/2 → 2/3≥



HIV testing

Suppose an HIV test is 98% effective in detecting HIV, i.e., 
its “false negative” rate = 2%.  Suppose furthermore, the 
test’s “false positive” rate = 1%.

0.5% of population has HIV
Let E = you test positive for HIV
Let F = you actually have HIV

What is P(F|E) ?
Solution:

43

↖ 
   P(E) ≈ 1.5%

Note difference between conditional and joint probability: P(F|E) = 33% ; P(FE) = 0.49%



why testing is still good

 Let Ec = you test negative for HIV
 Let F = you actually have HIV
 What is P(F|Ec) ?

HIV+ HIV-

Test + 0.98 = P(E|F) 0.01 = P(E|Fc)

Test - 0.02 = P(Ec|F) 0.99 = P(Ec|Fc)
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Odds 
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odds

The probabiliy of event E is P(E).

The odds of event E is P(E)/(P(Ec)

Example:  A = any of 2 coin flips is H:

P(A) = 3/4, P(Ac) = 1/4, so odds of A is 3  
(or “3 to 1 in favor”)

Example:  odds of having HIV:  

P(F) = .5% so P(F)/P(Fc) =  .005/.995  
(or 1 to 199 against; this is close, but not equal to,  
P(F)=1/200)
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Odds

Probabilities and Odds are interconvertible:

47

Odds(E) =
P (E)

1� P (E)

P (E) =
Odds(E)

1 +Odds(E)



posterior odds from prior odds

F = some event of interest (say,  “HIV+”)

E = additional evidence (say, “HIV test was positive”)

Prior odds of F:  P(F)/P(Fc)

What are the Posterior odds of F:  P(F|E)/P(Fc|E) ?

48

There’s nothing 
new here, versus 
prior results, but 
the simple form, 
and the simple 
interpretation 
are convenient.



Let E = you test positive for HIV
Let F = you actually have HIV

What are the posterior odds? 
 
 
 
 
 
 

More likely to test positive if you are positive, so Bayes factor 
>1; positive test increases odds, 98-fold in this case, to 2.03:1 
against (vs prior of 199:1 against)

posterior odds from prior odds
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HIV+ HIV-

Test + 0.98 = P(E|F) 0.01 = P(E|Fc)

Test - 0.02 = P(Ec|F) 0.99 = P(Ec|Fc)



Let Ec = you test negative for HIV
Let F = you actually have HIV

What are the posterior odds (ratio between P(F|Ec) and P(Fc|Ec)) ?  
 
 
 
 
 
 

Unlikely to test negative if you are positive, so Bayes factor <1; 
negative test decreases odds 49.5-fold, to 9850:1 against (vs 
prior of 199:1 against)

posterior odds from prior odds

HIV+ HIV-

Test + 0.98 = P(E|F) 0.01 = P(E|Fc)

Test - 0.02 = P(Ec|F) 0.99 = P(Ec|Fc)



simple spam detection

Say that 60% of email is spam
10% of spam has the word “Viagra”
1% of non-spam has the word “Viagra”
Let V = message contains the word “Viagra”
Let J = message is spam

What are posterior odds that a  
message containing “Viagra” is spam ?

Solution:
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Summary
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summary

Conditional probability
P(E|F): Conditional probability that E occurs given that F has occurred. 
Reduce event/sample space to points consistent w/ F (E ∩ F ; S ∩ F)

                                                                 

                              , if equiprobable outcomes.

P(EF) = P(E|F) P(F)       (“the chain rule”)
“P( - | F )” is a probability law, i.e., satisfies the 3 axioms

P(E) = P(E|F) P(F) + P(E|Fc) (1-P(F))     (“the law of total probability”)

Bayes theorem

prior, posterior, odds, prior odds, posterior odds, Bayes factor

53

(P(F) > 0)


