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Conditional Probability



conditional probability - intuition

Roll one fair die.

What is the probability that the outcome is 5?
1/6 (5 is one of 6 equally likely outcomes)

What is the probability that the outcome is 5 given that the
outcome is an even number?

O (5isn’t even)
What is the probability that the outcome is 5 given that the
outcome is an odd number?

/3 (3 odd outcomes are equally likely; 5 is one of them)

Formal definitions and derivations below



conditional probability - partial definition

Conditional probability of E given F: probability that E occurs given
that F has occurred.

“Conditioning on F”

S
Written as P(E|F) E
Means “P(E has happened, given F observed)”

Sample space S reduced to those

elements consistent with F (i.e. S M F)

Event space E reduced to those 5
elements consistent with F (i.e.E M F)

With equally likely outcomes:

# of outcomes in I consistent with /' |EF| ||EF
# of outcomes in S consistent with ' |SF| | |F|

pg| Fy = EEL_ IEFI/IS] [P(EF)}

P(E | F) =

L IRIIS) | P(F)




dice

Roll one fair die. What is the probability that the outcome is
5 given that it'’s odd?

E = {5} event that roll is 5
F ={l, 3,5} event that roll is odd
Way | (from counting):
P(E|F)=|EF|/|F|=I|E|/|F|=1/3
Way 2 (from probabilities):
P(E| F) = P(EF) / P(F) =P(E) / P(F) = (1/6) / (1/2) = 1/3
Way 3 (from restricted sample space):

All outcomes are equally likely. Knowing F occurred doesn’t
distort relative likelihoods of outcomes within F, so they remain

equally likely. There are only 3 of them, one being in E, so
P(E|F)=1/3



dice

Roll a fair die. What is the probability that the outcome is 5!
E = {5} (event that roll is 5) S ={l,2,3,4,5,6} sample space
P(E) = |E| /|S| = I/6

What is the prob. that the outcome is 5 given that it’s even?

G ={2,4,6}
Way | (counting):
P(E| G) = [EG| /|G| = |2| / |G| =0/3 = 0
Way 2 (probabilities):
P(E| G) = P(EG) / P(G) =P(@)/P(G)=(0)/(1/2) =0
Way 3 (restricted sample space):

Outcomes are equally likely. Knowing G occurred doesn’t distort relative
likelihoods of outcomes within G; they remain equally likely. There are 3 of

them, none being in E,so P(E | G) = 0/3



coin flipping

Suppose you flip two coins & all outcomes are equally likely.
What is the probability that both flips land on heads if...
* The first flip lands on heads?
Let B = {HH} and F = {HH, HT}
P(B|F) = P(BF)/P(F) = P({HH})/P({HH, HT})
= (1/4)/(2/4) = 1/2
* At least one of the two flips lands on heads?
Let A = {HH, HT, TH}
P(B|A) = |BA|/|A| = 1/3
* At least one of the two flips lands on tails?
Let G = {TH, HT, TT}
P(B|G) = P(BG)/P(G) = P(D)/P(G) = 0/P(G) =0




slicing up the spam




slicing up the spam

24 emails are sent, 6 each to 4 users.
|0 of the 24 emails are spam.
All possible outcomes equally likely.

E = user #| receives 3 spam emails

What is P(E) ?

ey = B O 1o




slicing up the spam

24 emails are sent, 6 each to 4 users.
|0 of the 24 emails are spam.
All possible outcomes equally likely

E = user #| receives 3 spam emails
F = user #2 receives 6 spam emails

: y  [and do you expect it to be
What is P(ElF) . larger than P(E), or smaller?]

M Z@S
P(E|F (s ~ 0.0784
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slicing up the spam

24 emails are sent, 6 each to 4 users.
|0 of the 24 emails are spam.
All possible outcomes equally likely

E = user #| receives 3 spam emails
F = user #2 receives 6 spam emails
G = user #3 receives 5 spam emails

What is P(G|F) ?

o6 - ST DEEEE

Il ()66
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conditional probability - general definition

P(EF)
PF) where P(F) > 0

Holds even when outcomes are not equally likely.

General defn: | P(E | F) =

Example: S = {# of heads in 2 coin flips} = {0, I, 2}
NOT equally likely outcomes: P(0)=P(2)=1/4, P(1)=1/2

Q. What is prob of 2 heads (E) given at least | head (F)?
A. P(EF)/P(F) = P(E)/P(F) = (1/4)/(1/4+1/2) = 1/3

Same as earlier formulation of this example (of course!)
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The Chain Rule
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conditional probability: the chain rule

BT p. 24
PEF) where P(F) > 0
P(F)

Holds even when outcomes are not equally likely.

What if P(F) = 0?
P(E|F) undefined: (you can’t observe the impossible)

Implies when pE>01: P(EF) = P(E|F) P(F)  (“the chain rule”)

General defn: P(E | F) =

General definition of Chain Rule:

P(E\Ey---E,) =

P(E\)P(Es | BE\)P(Es | E1, Eo) -+ P(Ey | Ev,Ea,..., En_1)
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chain rule example - piling cards

- “ ”
4

oy
"

e T
"'

2
G

QeI
20w dl:
'?'.?r-o_ S

v

., .
-

wJA ¢ -

A

'y’

-

a‘
N ('.’ O¢

-~
.

o
S
2

2\

15



piling cards

Deck of 52 cards randomly divided into 4 piles
| 3 cards per pile
Compute P(each pile contains an ace)

Solution:

E, ={ v |in any one pile }

E, = {é v | & & | in different piles }

. I : : :
E;={ v+ |[&]| « |indifferent piles }

v
V

E, = { all four aces in different piles }

Compute P(E, E, E5 E))
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piling cards

E2={&v‘&

v
y

E, = {& v |in any one pile }

in different piles }

A

X A
v “ 4 y
Es={ v |®.
v

v

L 4

o
v

in different piles }

E, = { all four aces in different piles }

P(EI E2E3E4)

= P(E)) P(E,|E,) P(E;|E|E;) P(E4|E,E,E;)
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piling cards

E, ={ v |in any one pile }

E2={" & *@

A T
¥ y

in different piles }

A LA
e EL P

E;={ v |[®] ¢ |in different piles }

E, = { all four aces in different piles }

P(E/E.E3E,) = P(E)) P(Ey|E)) P(E5|E Ey) P(E4|E E,Es)

P(E|) = 52/52 = | (AW can go anywhere) A conceptual trick: what’s
randomized?

P(E,|E,) = 39/51 (39 of 51 slots not in AW pile) ) m“dg““ﬁzi - ds’ldg.l

b) sort cards, aces first, deal
P(E3 E|E2 ) = 26/50 (26 notin AW, AM piles) randomly into empty

slots among 4 piles.

P(E,|EE,E;) = 13/49 (13 notinAW.AB.A® piles)
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piling cards

E2={&v‘&

v
y

E, = {& v |in any one pile }

in different piles }

A

X A
v “ 4 y
Es={ v |®.
v

v

E, = { all four aces in different piles }

P(EI E2E3E4)

= P(E,) P(E,|E,) P(E5|EE,) P(E4|E,E,E;)
= (52/52)*(39/51)+(26/50)+(13/49)

~ 0.105

L 4

o
v

in different piles }
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Conditional Probability is Probability
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conditional probability is probability
BT p. 19

“P(-|F)” is a probability law, i.e., satisfies the 3 axioms

Proof:
the idea is simple—the sample space contracts to F; dividing all

(unconditional) probabilities by P(F) correspondingly re-
normalizes the probability measure; additivity, etc., inherited

— see text for details; better yet, try it!

Ex:P(AUB) < P(A) + P(B)
P(AUB|F) < P(A|F) + P(B|F)

|-P(AC)

Ex: P(A)
- |-P(AC|F)

P(A[F)

etc.
21



Another Example
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sending bit strings

Bit string with m |’s and n O’s sent on the network

All distinct arrangements of bits equally likely MOQ//@/&/ “Z

ﬂﬂ/f

E = first bit received isa 0 I ZNUW/W/
F = k of first r bits received are 0’s W oo
What's P(E|F)?
Solution | (“restricted sample space”):
Observe:
P(E|F) = P(picking one of k 0’s out of r bits)
So:
P(E|F) = k/r

24



sending bit strings

Bit string with m |’s and n O’s sent on the network

All distinct arrangements of bits equally likely MOQ//WW//Z
E = first bit received isa 0 iy ZNUW/W/ 74
F = k of first r bits received are Q’s jw//m/ s

What'’s P(E|F)?
Solution 2 (counting):
EF = { (n+m)-bit strings | 1% bit = 0 & (k-1)0’s in the next (r-1) }

er= (o) ()
1= () ()

1EF| _ Go) (%) _ Go) (M%) &
EF = ———
PED ST TR TREDCED

One of the many binomial identities

25




sending bit strings

Bit string with m |’s and n O’s sent on the network

All distinct arrangements of bits equally likely m/m@w/f/
E = first bit received isa 0 I ZNﬁW/W/

F = k of first r bits received are 0’s 7&/0///&/4/ Y
What's P(E|F)? T '
Solution 3 (more fun with conditioning):

n n—1 m
= T
r—d Above eqns
(o) (70 ls the same
P(F) = (TFTY " gty et i dentiy owice.
Reversing conditioning (more to come)
/EF\ P(F | E)P(E) / k
PELE) = "pr) PE) T
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Law of Total Probability

27



law of total probability

BT p. 28

E and F are events in the sample space S

E=EF u EFe

EF n EFc =
= P(E) = P(EF) + P(EF)

28



law of total probability

BT p. 28

P(E) = P(EF) + P(EFC) weighted average,
= P(ElF) P(F) + P(ElFC) P(FC) conditiongd on event
— P(ElF) P(F) + P(ElFC) (I-P(F)) Fhappenlng or not.

More generally, if Fi, Fy, ..., Fn partition S (mutually exclusive,
U: F =S, P(F:)>0), then

P(E) — Zi P(E|F|) P(F|) weighted average,

conditioned on which
event F; happened

(Analogous to reasoning by cases; both are very handy.)

29



law of total probability—example

Sally has | elective left to take: either Phys or Chem. She
will get an A with probability 3/4 in Phys, with prob 3/5 in
Chem. She flips a coin to decide which to take.

What is the probability that she gets an A?

Phys, Chem partition her options (mutually exclusive, exhaustive)
P(A) = P(A n Phys) + P(A n Chem)

= P(A|Phys)P(Phys) + P(A|Chem)P(Chem)

= (3/4)(1/2)+(3/5)(1/2)

= 27/40

Note that conditional probability was a means to an end in this example, not the goal itself.
One reason conditional probability is important is that this is a common scenario: break a

complex problem into simpler cases.

30



Example: Gamblet’s Ruin
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gamblers ruin

BT pg. 63
2 Gamblers: Alice & Bob. -3
A has i dollars; B has (N-i) 0

Flip a coin. Heads —A wins $1;Tails — B wins $1

. aka “Drunkard’s Walk”
Repeat until A or B has all N dollars

What is P(A wins)!? ice exampl of the vy of
Let Ei = event that A wins starting with $i ntotwo crip cass instead of
Approach: Condition on I flip thereof
owdossh p; = | P(E;)) =P(E; | H)P(H) + P(E; | T)P(T)
1 . _
P = §(pi+1 + pi—1) Sor pa = 2p
2 = Piri +FBi-1 - ,
. Pi = 1P1
Pi+1 —Pi = DPi— Pi—1
p2 —pP1 = P1—Po = Pp1, since pg = 0 ,
D; — Z/N

32



Bayes Theorem
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Bayes Theorem

BT p. 1.4

6 balls in an urn,
some red, some white

Z7 Probability of

& » drawing 3 red

balls, given 3 in
urn ?

Probability of 3

red balls in urn,

given that | drew
three!

34



hunted down russian
submarines & emerged

triump

centur?

®

nant from two &~

es of controversy

,,,,,,

Yale University Press, 2011

ISBN-13: 978-0300188226

http://www.amazon.com/Theory-That-
Would-Not-Die/dp/0300188226/
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Bayes Theorem

“Improbable Inspiration: The future
of software may lie in the obscure
theories of an 18% century cleric

named Thomas Bayes”

Los Angeles Times (October 28, 1996)
By Leslie Helm, Times Staff Writer

“When Microsoft Senior Vice Premdent

concerns...

planning a huge investment in an
Internet service offering... he went
to Chairman Bill Gates with his

Gates began discussing the critical role
of “Bayesian” systems...”

source: http://www.ar-tiste.com/latimes_oct-96.html




Bayes Theorem

Most common form:

P(F | E) = P(E]LQ)P(F)
Expanded form (using law of total probability):
_ P(E | F)P(F)
PULE) = BiE TR PF) + P(E| FO)PFY)
Proof:
" P(EF) P(E|F)P(F)
IR =5m T T rm

37



Bayes Theorem

Most common form:

P(F | E) = P(E]LQ;D(F)
Expanded form (using law of total probability):
_ P(E | F)P(F)
PULE) = BiE TR PF) + P(E| FO)PFY)

Why it's important:
Reverse conditioning
P( model | data ) ~ P( data | model )
Combine new evidence (E) with prior belief (P(F))

Posterior vs prior
38



Bayes Theorem

An urn contains 6 balls, either 3 red + 3 white or all 6 red.
You draw 3;all are red.
Did urn have only 3 red?

Can't tell! w
Suppose it was 3 + 3 with probability p=3/4. <

Did urn have only 3 red?

M = urn has 3 red + 3 white

D =1 drew 3 red
3 6 1
o = (/) -3
. P(D | M)P(M)
(M| D) = P(D| M)P(M)+ P(D | M¢)P(M¢)

(o) (2 _ 3 prior = 3/4 ;

20) (1)
(2)(2) j (1)(1—3) 23 posterior = 3/23




simple spam detection

Say that 60% of email is spam
90% of spam has a forged header
20% of non-spam has a forged header
Let F' = message contains a forged header
Let / = message is spam

What is P(J|F) ?

Solution:

PJ|F) =

Q2
-
0
~J
 —

prior = 60%
bosterior = §07%



simple spam detection

Say that 60% of email is spam
0% of spam has the word “Viagra”
| % of non-spam has the word “Viagra”
Let V = message contains the word “Viagra”

Let / = message is spam
What is P(J|V) !

Solution:
) PV | J)P(J)
PUIYY = B The) + PV | 79 P9
) (0.1)(0.6)
(0.1)(0.6) + (0.01)(1 — 0.6)
~  0.9375 brior = 60%

posterior = 214%



DNA paternity testing

Child is born with (A,a) gene pair (event By ,)
Mother has (A,A) gene pair
Two possible fathers: M, = (a,a), M, = (a,A)
P(M)) =p, P(My) = I-p

What is P(M, | Bp,) !

. . Exercises:
Solution: What if M were (AA)?
What if child were (A,A)?
P(M; | Baq)

P(Bag | My)P(M7)
P(Bag | M1)P(My) + P(Baq | Ms)P(Ms)

1 p+05(1—p) 14p-1+1 P -2

l.e., the given data about child raises probability that M, is father
42



HIV testing

Suppose an HIV test is 98% effective in detecting HIV, i.e.,
its “false negative” rate = 2%. Suppose furthermore, the
test’s “false positive” rate = 1%.

0.5% of population has HIV
Let E = you test positive for HIV
Let F = you actually have HIV
What is P(F|E) ?
Solution:
P(E | F)P(F)
P(E | F)P(F)+ P(E | F¢)P(F¢)
(0.98)(0.005)
(0.98)(0.005) 4+ (0.01)(1 — ().()()5)\

0.330 P(E) = 1.5%

Note difference between conditional and joint probability: P(F|E) = 33% ; P(FE) = 0.49%
43

P(F|E) =
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why testing is still good

HIV+ HIV-
Test + 0.98 = P(E[F) | 0.01 = P(E|F°)
Test - 0.02 = P(E€|F) | 0.99 = P(E¢|F¢)

Let EC = you test negative for HIV
Let F = you actually have HIV

What is P(F|E) ?

PF B P(E* | F)P(F)

P(Ec | F)P(F)+ P(E° | F¢)P(Fe)

(0.02)(0.005)
(0.02)(0.005) + (0.99)(1 — 0.005)
0.0001

Q

44



Odds
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odds

The probabiliy of event E is P(E).
The odds of event E is P(E)/(P(E®)

Example: A = any of 2 coin flips is H:

P(A) = 3/4,P(A°) = |/4,so odds of A is 3
(or “3 to | in favor”)

Example: odds of having HIV:

P(F) = .5% so P(F)/P(F¢) = .005/.995
(or | to 199 against; this is close, but not equal to,
P(F)=1/200)

46



Odds

Probabilities and Odds are interconvertible:

Odds(FE) = lf)SDE()E)
P(E) — Odds(FE)

1 4+ Odds(FE)

47



posterior odds from prior odds

F = some event of interest (say, “HIV+")

E = additional evidence (say, ‘HIV test was positive”)
Prior odds of F: P(F)/P(F°)

What are the Posterior odds of F: P(F|E)/P(F¢|E) ?

P(E | F)P(F
P(F|E) — (B | F)P(F)
P(E) There’s nothing
P(E | FS\P(F¢ new here, versus
P(Fc | E) — ( | ) ( ) prior results, but
P(E) the simple form,
and the simple
P(F ‘ E) L P(E ’ F) P(F) interpretati.on
P(Fc ‘ E) o P(E ’ FC) P(FC) are convenient.

posterior
odds

“Bayes prior
factor” odds

48



posterior odds from prior odds

Let E = you test positive for HIV HIV+ HIV-
Test + | 0.98 = P(E|F) [0.01 = P(E|F°)

Let F = you actually have HIV Test - | 0.02 = P(E|F) |0.99 = P(E<|F¢)

What are the posterior odds!?

P(F | E) P(E|F) P(F)
P(FC[E) — P(E[F°)P(F)
(posterior odds = “Bayes factor” - prior odds)
0.98 0.005
~ 0.0l 0.995

More likely to test positive if you are positive, so Bayes factor
>|; positive test increases odds, 98-fold in this case, to 2.03:|

against (vs prior of 199:1 against) 45



posterior odds from prior odds

Let E€ = you test negative for HIV HIV+ HIV-
Test + | 0.98 = P(E|F) |0.01 = P(E|F°)

Test - | 0.02 = P(E|F) |0.99 = P(E¢|F°)

Let F = you actually have HIV

What are the posterior odds (ratio between P(F|E) and P(F¢|E°)) ?

P(E | E) P(E® | F) P(F)
P(Fe[E) — P(E°|F) P(F°)
(posterior odds = “Bayes factor” - prior odds)
0.02 0.005
~ 099 0.995

Unlikely to test negative if you are positive, so Bayes factor <lI;
negative test decreases odds 49.5-fold, to 9850:1 against (vs
prior of 199:1 against)



simple spam detection

Say that 60% of email is spam
0% of spam has the word “Viagra”
| % of non-spam has the word “Viagra”
Let V = message contains the word “Viagra”
Let / = message is spam
What are posterior odds that a
message containing “Viagra” is spam !

Solution:
pJ\Vv) _ PV]J) PUJ)
P(Je|V) PV ]Je) P(J°)
(posterior odds = “Bayes factor” - prior odds)

0.10 0.6

15 = :
° 0.01 04
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Summary
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summary

Conditional probability

P(E|F): Conditional probability that E occurs given that F has occurred.
Reduce event/sample space to points consistent w/ F (En F;S n F)

P(EF)
P(E | F)=
R
P(E|F)= HE—F? , if equiprobable outcomes.

P(EF) = P(E|F) P(F) (“the chain rule”)
“P(-| F)” is a probability law, i.e., satisfies the 3 axioms

P(E) = P(E|F) P(F) + P(E|F°) (I1-P(F))  (“the law of total probability”)
Bayes theorem

pir | )~ PELDPE)

P(E)

prior, posterior, odds, prior odds, posterior odds, Bayes factor
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