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Probability theory:

“an aberration of the intellect” 

and 

“ignorance coined into science”  

– John Stuart Mill
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sample spaces 
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Sample space:  S is a set of all potential outcomes of an 
experiment  (often Ω in text books–Greek uppercase omega)

   Coin flip:    S = {Heads, Tails}

   Flipping two coins: S = {(H,H), (H,T), (T,H), (T,T)}

   Roll of one 6-sided die: S = {1, 2, 3, 4, 5, 6}

   # emails in a day: S = { x : x ∈ Z,  x ≥ 0 }

   YouTube hrs. in a day: S = { x : x ∈ R, 0 ≤ x ≤ 24 }

Some fine print:  “sample space” for an experiment isn’t uniquely defined, & “potential” 
outcomes may include literally impossible ones, e.g., S={1,2,3,4,5,6,7} for a 6-sided die;  
it’s all OK if you’re sensible and consistent, e.g., if you make probability(7)=0.  Rare to 
see things quite this wacky, but bottom line: a sample space is just a set, any set.



events 

Events:  E ⊆ S is an arbitrary subset of the sample space

   Coin flip is heads:  E = {Head}

   At least one head in 2 flips: E = {(H,H), (H,T), (T,H)}

   Roll of die is odd: E = {1, 3, 5}

   # emails in a day < 20: E = { x : x ∈ Z,  0 ≤ x < 20 }

   # emails in a day is prime: E = { 2, 3, 5, 7, 11, 13, … }

   Wasted day (>5 YT hrs): E = { x : x ∈ R,  x > 5 }

Note: an event is not an outcome, it is a set of outcomes.  E.g., the outcome 
of rolling a die is always a single number in1..6;  “roll is odd” aggregates 3 
potential outcomes as one event; “roll is >5” aggregates 1 potential 
outcome as the event E = {6} (a singleton set; sole element is the 
outcome 6).
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set operations on events 

E and F are events in the sample space S
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set operations on events 

Event “E OR F”, written E ∪ F

S = {1,2,3,4,5,6} 
outcome of one die roll 

E = {1,2},  F = {2,3}
E ∪ F = {1, 2, 3}

E and F are events in the sample space S
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set operations on events 

Event “E AND F”, written E ∩ F or EF

E = {1,2},  F = {2,3}
E ∩ F = {2}

E and F are events in the sample space S

S = {1,2,3,4,5,6} 
outcome of one die roll 
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set operations on events 

EF = ∅ ⇔ E,F are “mutually exclusive”

E = {1,2},  F = {2,3}, G={5,6}
EF = {2}, not mutually 

exclusive, but E,G and F,G are

G 

E and F are events in the sample space S

S = {1,2,3,4,5,6} 
outcome of one die roll 
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set operations on events 

E and F are events in the sample space S

S = {1,2,3,4,5,6} 
outcome of one die roll 

Event “not E,” written E or ¬E

E = {1, 2}   ¬E = { 3, 4, 5, 6} 
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set operations on events 

DeMorgan’s Laws
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probability 

Intuition:  Probability as the relative frequency of an event

Pr(E) = limn→∞ (# of occurrences of E in n trials)/n�

Mathematically,  this proves messy to deal with. 

Instead,  we define “Probability” via a function from subsets of 

S (“events”) to real numbers 

Pr: 2S → ℝ

satisfying the properties (axioms) below.
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axioms of probability 

Intuition:  Probability as the relative frequency of an event

Pr(E) = limn→∞ (# of occurrences of E in n trials)/n

Axiom 1 (Non-negativity):  0 ≤ Pr(E)

Axiom 2 (Normalization):  Pr(S) = 1

Axiom 3 (Additivity):  
     If E and F are mutually exclusive (EF = ∅), then

Pr(E ∪ F) = Pr(E) + Pr(F)      

For any sequence E1, E2, …, En of mutually exclusive events,
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implications of axioms 

Pr(E) = 1 - Pr(E)
1 = Pr(S) = Pr(E ∪ E) = Pr(E) + Pr(E)

 If E ⊆ F,  then Pr(E) ≤ Pr(F)
Pr(F) = Pr(E) + Pr(F – E) ≥ Pr(E)

Pr(E ∪ F) = Pr(E) + Pr(F) – Pr(EF)
inclusion-exclusion

Pr(E) ≤ 1
exercise

And many others
14 
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Sample space:  S = set of all potential outcomes of experiment

E.g., flip two coins: S = {(H,H), (H,T), (T,H), (T,T)}

Events:  E ⊆ S is an arbitrary subset of the sample space

≥1 head in 2 flips:  E = {(H,H), (H,T), (T,H)}    S =

Probability:

A function from subsets of S to real numbers – Pr: 2S → ℝ
Probability Axioms:

Axiom 1 (Non-negativity):  0 ≤ Pr(E)

Axiom 2 (Normalization):  Pr(S) = 1

Axiom 3 (Additivity):  EF = ∅ ⇒ Pr(E ∪ F) = Pr(E) + Pr(F) 

review 
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 Simplest case: sample spaces with equally likely outcomes.

 Coin flips: S = {Heads, Tails}
 Flipping two coins: S = {(H,H),(H,T),(T,H),(T,T)}
 Roll of 6-sided die: S = {1, 2, 3, 4, 5, 6}

 Pr(each outcome) = 

 In that case, 

Why?  Axiom 3 plus fact that E = union of singletons in E

equally likely outcomes 
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Roll two 6-sided dice.   What is Pr(sum of dice = 7) ?
 
   S =  { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6),
           (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)  }

  E =  { (6,1), (5,2), (4,3), (3,4), (2,5), (1,6) }

Pr(sum = 7) = |E|/|S| = 6/36 = 1/6.

rolling two dice 

Side point: S is 
small; can write 
out explicitly, but 
how would you 
visualize the 
analogous 
problem with 103-
sided dice? 
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Roll two 6-sided dice.   What is Pr(sum of dice = 7) ?
 
   S =  { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6),
           (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)  }

  E =  { (6,1), (5,2), (4,3), (3,4), (2,5), (1,6) }

Pr(sum = 7) = |E|/|S| = 6/36 = 1/6.

rolling two dice 
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SIDEBAR  
It’s perhaps tempting to try S={2,3,…,12} and E={7} 
for this problem.  This isn’t wrong, but note that it 
doesn’t fit the “equally likely outcomes” scenario.  
E.g., Pr({2})=1/36 ≠ 1/6=Pr({7}).  Plus, it’s usually 
best to make “S” a simple representation of the 
“experiment” at hand, e.g., an ordered pair reflecting 
the 2 dice rolls, rather than a more complex derivative 
of it, like their sum.  The later makes it easy to 
express this event (“sum is 7”), but makes it difficult 
or impossible to express other events of potential 
interest (“product is odd,” for example). 



twinkies and ding dongs 
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twinkies and ding dongs 

4 Twinkies and 3 DingDongs in a bag.  3 drawn.
What is Pr(one Twinkie and two DingDongs drawn) ?

 Ordered:
•  Pick 3, one after another:  |S| = 7 • 6 • 5 = 210
•  Pick Twinkie as either 1st, 2nd, or 3rd item:
   |E| = (4•3•2) + (3•4•2) + (3•2•4) = 72
•  Pr(1Twinkie and 2 DingDongs) = 72/210 = 12/35.

 Unordered:
•  Grab 3 at once: |S| 
•  |E|  
•  Pr(1Twinkie and 2 DingDongs) = 12/35.

Exercise: a 3rd way – S is ordered list of 7, E is “1st 3 OK”; same answer?
20 

(S: ordered triples with 3 of 7 distinguishable objects) 

(S: unordered triples with 3 of 7 distinguishable objects) 

Crowded; 
split on 2 
slides?? 

 



birthdays 
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birthdays 

What is the probability that, of n people, none share 
the same birthday?

What are S, E??
 |S| = (365)n

 |E| = (365)(364)(363)!(365-n+1)
 Pr(no matching birthdays) = |E|/|S|
      = (365)(364)…(365-n+1)/(365)n

 Some values of n…
 n = 23: Pr(no matching birthdays) < 0.5
 n = 77: Pr(no matching birthdays) < 1/5000
 n = 90:   Pr(no matching birthdays) < 1/162,000
 n = 100: Pr(no matching birthdays) < 1/3,000,000
 n = 150: Pr(…) < 1/3,000,000,000,000,000
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birthdays 

n = 366?  

Pr = 0 

�
Above formula gives this, since 

   (365)(364)…(365-n+1)/(365)n  == 0

when n = 366 (or greater).

Even easier to see via pigeon hole principle.
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birthdays 

What is the probability that, of n people, none share 
the same birthday as you?

 |S| = (365)n

 |E| = (364)n

 Pr(no birthdays = yours) �
    = |E|/|S| = (364)n/(365)n

 Some values of n…
 n = 23: Pr(no matching birthdays) ≈ 0.9388
 n = 90:   Pr(no matching birthdays) ≈ 0.7812
 n = 253:  Pr(no matching birthdays) ≈ 0.4995

Exercise: pn is not linear, but red line looks straight.  Why?
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hashing 

Q: If you hash 23 entries into a hash table with 365 
buckets, what is the chance that there will be no 
collisions?

A: <1/2 even when the hash table is >93% empty!
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chip defect detection 
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chip defect detection, a1 

n chips manufactured, one of which is defective
k chips randomly selected from n for testing

 What is Pr(defective chip is in k selected chips) ?

 |S| =           |E| = 

 Pr(defective chip is among k selected chips)
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chip defect detection, a2 

n chips manufactured, one of which is defective
k chips randomly selected from n for testing

What is Pr(defective chip is in k selected chips) ?

Different analysis:
•  Select k chips at random by permuting all n chips 

and then choosing the first k.
•  Let Ei = event that ith selected chip is defective.
•  Events E1, E2, …, Ek are mutually exclusive
•  Pr(Ei) = 1/n  for i=1,2,…,k
•  Thus Pr(defective chip is selected)
         = Pr(E1) + ! + Pr(Ek) = k/n.
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chip defect detection, b1 

n chips manufactured, two of which are defective
k chips randomly selected from n for testing

What is Pr(a defective chip is in k selected chips) ?

|S| =        |E| = (1 chip defective) + (2 chips defective)

               = 

Pr(a defective chip is in k selected chips)
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chip defect detection, b2 

n chips manufactured, two of which are defective
k chips randomly selected from n for testing

What is Pr(a defective chip is in k selected chips) ?

Another approach: 
Pr(a defective chip is in k selected chips) = 1-Pr(none)
Pr(none): 

�
Pr(a defective chip is in k selected chips) = �
(Same as above?  Check it!)
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poker hands 
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poker hands 

5 card poker hands (ordinary 52 card deck, no jokers etc.)

flush, 1 pair, 3 of a kind, 2 pairs, full house, …

Sample Space? 

   Imagine sorted tableau of cards, pick 5:

   |S| = 

34 

A♥ 2♥ 3♥ … 10♥ J♥ Q♥ K♥ 
A♣ 2♣ 3♣ … 10♣ J♣ Q♣ K♣ 
A♦ 2♦ 3♦ … 10♦ J♦ Q♦ K♦ 
A♠ 2♠ 3♠ … 10♠ J♠ Q♠ K♠ 



any straight in poker 

Consider 5 card poker hands.

A “straight” is 5 consecutive �
rank cards ignoring suit (Ace�
low or high, but not both.  E.g.,  A,2,3,4,5 or 10,J,Q,K,A)

What is Pr(straight) ?

S as on previous slide, |S| =                    What’s E?

E = Pick col A, 2, … 10, then 1 of 4 in 5 consecutive cols (wrap K⇾A) 

|E|  =                           Pr(straight) = 
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card flipping 
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card flipping 

52 card deck.  Cards flipped one at a time.
 After first ace (of any suit) appears, consider next card

 Pr(next card = ace of spades) < Pr(next card = 2 of clubs) ?

Maybe, Maybe Not …

S = all permutations of 52 cards, |S| = 52!

Event 1:  Next = Ace of Spades. 
      Remove A♠, shuffle remaining 51 cards, add A♠ after first Ace

 |E1| = 51! (only 1 place A♠ can be added)

Event 2:  Next = 2 of Clubs 

      Do the same thing with 2♣; E1 and E2 have same size

So,              Pr(E1) = Pr(E2) = 51!/52! = 1/52
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Ace of Spades: 2/6 2 of Clubs: 2/6

Theory is the same for a 3-card deck; Pr = 2!/3! = 1/3
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hats 
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n persons at a party throw hats in a pile, select at 
random.  What is Pr(no one gets own hat)?

Pr(no one gets own hat) = �
    1 – Pr(someone gets own hat)  

Pr(someone gets own hat) = Pr(∪n  Ei), where�
Ei = event that person i gets own hat

Pr(∪n  Ei) =Σi P(Ei) –Σi<j Pr(Ei Ej)+Σi<j<k Pr(Ei Ej Ek)…

hats 

i=1
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Visualizing the sample space S:

  People: �
  Hats:

  I.e., a sample point is a permutation π of 1, …, n

  

|S| = n!

hats: sample space 
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P1 P2 P3 P4 P5 

H4 H2 H5 H1 H3 

4 2 5 1 3 



Ei = event that person i gets own hat:  π(i) = i

  

Counting single events:                    

 

   |Ei| = (n-1)! for all i

Counting pairs:

   EiEj :  π(i) = i  & π(j) = j

   |EiEj| = (n-2)! for all i, j

hats: events 
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i=2 i=5

All points in E2 ∩ E5

4 2 1 3 5 
A sample point 
in E2 (also in E5)
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? 2 ? ? ? All points in E2

i=2



n persons at a party throw hats in middle, select at 
random.  What is Pr(no one gets own hat)?

Ei = event that person i gets own hat

Pr(∪n  Ei) =Σi P(Ei) –Σi<j Pr(Ei Ej)+Σi<j<k Pr(Ei Ej Ek)…

Pr(k fixed people get own back)  = (n-k)!/n!

(  ) times that =                                 = 1/k!

Pr(none get own) = 1-Pr(some do) =�
1 – 1/1! + 1/2! – 1/3! + 1/4! … + (-1)n/n!  ≈ 1/e ≈ .37

hats 

i=1

       n!    (n-k)!
k!(n-k)!    n!   

n
k
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Pr(none get own) = 1 - Pr(some do) =�
1 – 1 + 1/2! – 1/3! + 1/4! … + (-1)n/n!  ≈ e-1 ≈ .37

Oscillates forever, but 
quickly converges to 1/e 

e-1
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summary 

Sample spaces
Events
Set theory

Axioms
Simple identities
Equally likely outcomes (counting)

Examples
All good for building your skills

Birthdays is particularly important for applications
Hats is important as example of inclusion/exclusion
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} Visualize! 


