
A Demo or Two

March 6, 2017

Here are a few simple demonstrations illustrating important concepts from the course. Most use R; see R Quick
Start for a quick introduction to R. You should be able to run these demos below by copying the R code shown below
and pasting it into an R console window (or putting it in a file and entering “source(’filename’)”).

Laws Of Large Numbers: The Weak and Strong Laws of Large Numbers are important theoretical results, essen-
tially guaranteeing that the average of a large number if independent samples from arbitrary distributions will
converge to the expected value of such a variable. As a simple illustration of this, the following looks at averages
of i.i.d. Uniform(0,1) random variables:

#
"Regression Towards the Mean" -- by the law of large numbers, the mean of an
increasingly large sample of, e.g., uniform RVs, should converge to the mean.
#
Plot a sample of i.i.d. uniform RVs & successive sample means thereof.
#
Parameters:
n: # samples,
ksigma: if > 0, also plot +/- ksigma*sigma envelope around the mean
cex: controls point size,
others: plot colors
#
Usage:
Copy/paste this into the console window of an R session, or enter
"source('filename.R')" to define the function, then enter "rtm()" to run it.
#
rtm <- function(n=200, ksigma=2, cex=2, cmu='red', cavg='blue', csig='red'){
v <- runif(n) # n samples from uniform
mu <- 0.5 # mean &
sigma <- 1/sqrt(12) # variance of each sample
plot the samples:
plot(v,pch='.',xlab='Trial number i',ylab='Sample i; Mean(1..i)',cex=cex)
plot a horizontal line at mean:
lines(c(1,n),c(mu,mu),col=cmu,lwd=1)
plot n successive sample means:
points(1:n,cumsum(v)/(1:n),type='l',col=cavg,lwd=2)
if(ksigma>0){
plot k-sigma envelope around mean:
points(1:n, mu+ksigma*sigma/sqrt(1:n), type='l',lwd=1,col=csig,lty='dashed')
points(1:n, mu-ksigma*sigma/sqrt(1:n), type='l',lwd=1,col=csig,lty='dashed')
add plot legend:
legend('bottomright',

legend=c("Sample Mean_n", "mu", paste("mu +/-",ksigma,"sigma")),
col=c(cavg, cmu, csig),
lwd=c(2, 1, 1),
lty=c('solid', 'solid', 'dashed'),

bty='n')
}

1

http://www.r-project.org
http://courses.cs.washington.edu/courses/cse312/13au/misc/rstarter.pdf
http://courses.cs.washington.edu/courses/cse312/13au/misc/rstarter.pdf

}

rtm() # Call it once, with default parameters.

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trial number i

S
am

pl
e

i;
M

ea
n(

1.
.i)

Sample Mean_n
mu
mu +/− 2 sigma

Another plot, with larger n:

rtm(n=1000)

2

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trial number i

S
am

pl
e

i;
M

ea
n(

1.
.i)

Sample Mean_n
mu
mu +/− 2 sigma

Exercise: Do something similar for a different distribution (normal, exponential, Poisson,...) in place of uniform.

The Central Limit Theorem: Another very important result is the Central Limit Theorem: Not only does the value
of the average of a large sample of independent random variables from arbitrary distributions converge to its
expected limit (above), but the shape of the distribution of those averages also converges to a well-defined
limit—namely, it is approximately normally distributed.

Convergence of any wacky distrib to normal as in CLT
#
Method: n-fold convolution of initial distribution with itself
#
For the n-th convolution, we need both the (n-1)-st and the original
distributions, so for convenience these are bundled into a list and
returned, making a by-hand iteration simple:
bundle1 <- clt(wacky=//*put your wacky distribution here*//)
bundle2 <- clt(bundle1) # 2-fold convolution
bundle3 <- clt(bundle2) # 3-fold convolution
...
#
Parameters:
bundle : initially NULL; subsequently, result of previous call
plot = T to see plot
verbose = T to annotate plot with mu, sigma, etc.
bell = T to overlay bell curve
wacky = vector of numbers representing relative probabilities of
outcomes 1:length(wacky); irrelevant unless bundle == NULL
cex = scale factor for point size
#
clt <- function(bundle=NULL, plot=T, verbose=T, bell=T,

wacky=c(1:10,9:0,rep(0,5),rep(5,10)), cex=NULL){
if(is.null(bundle)){

mywack <- wacky/sum(wacky) # normalize
bundle <- list(n=1,result=mywack,start=mywack) # bundle params/result

3

}
if(plot){

len <- length(bundle$result)
x <- (0:(len-1))/(len-1)
y <- bundle$result
plot(x,y,xlab='x-bar',ylab='Probability/Density',cex=cex,pch=19)
mu <- sum(x*y)
sig2 <- sum((x-mu)ˆ2*y)
sig <- sqrt(sig2)
chatter <- ifelse(!verbose,'', paste(

'\nmu =', round(mu,2),
'\nsig =',round(sig,2),
'\nsig*sqrtn =', round(sig*sqrt(bundle$n),2),
'\nlen = ', length(x)));

text(.85,.8*max(bundle$result), paste('n =',bundle$n,chatter))
if(bell){points(x,dnorm(x,mu,sig)/length(x),type='l',lwd=2,col='blue')}

}
return(
list(
n = bundle$n+1,
result = convolve(bundle$result,rev(bundle$start),type='o'),
start = bundle$start))

}

Make a "movie" of above; if "file" is NULL, display to screen, else write a
multi-page .pdf file. The "..." formal and actual parameters have a special
meaning in R: accept extra named arguments to this function and pass them to
inner calls.
clt.movie <- function(filename ="central.limit.thm.movie.pdf", frames=50, ...){
opar<-par(no.readonly=T);on.exit(par(opar))
if(!is.null(filename)){

noninteractive version: open .pdf graphics "device"
pdf(filename,onefile=T,width=9,height=7)

} else {
interactive version: pause after each plot & ask to continue
devAskNewPage(TRUE)

}
bundle <- clt(...)
for(i in 2:frames){

tweak cex to make dots smaller when there are more of them
bundle <- clt(bundle, cex=(1-i/frames)*.6+.4, ...)

}
if(!is.null(filename)){dev.off()} # close .pdf

}

clt.movie(NULL,4)

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

x−bar

P
ro

ba
bi

lit
y/

D
en

si
ty

n = 1
mu = 0.47
sig = 0.3

sig*sqrtn = 0.3
len = 35

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

x−bar

P
ro

ba
bi

lit
y/

D
en

si
ty

n = 2
mu = 0.47
sig = 0.22

sig*sqrtn = 0.3
len = 69

●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●

●
●

●
●

●
●

●
●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

x−bar

P
ro

ba
bi

lit
y/

D
en

si
ty

n = 3
mu = 0.47
sig = 0.18

sig*sqrtn = 0.3
len = 103

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

x−bar

P
ro

ba
bi

lit
y/

D
en

si
ty

n = 4
mu = 0.47
sig = 0.15

sig*sqrtn = 0.3
len = 137

Another CLT example, just showing 4 of 10 frames
Default is a vee-shaped distribution
clt.vee <- function(dist=abs(-16:16), ...){
opar <- par(mfrow=c(2,2),no.readonly=T) # graph params: 4 plots in 2x2 grid
on.exit(par(opar))
bundle <- clt(wacky=dist, plot=TRUE, ...)
for(i in 2:10) {
show plots only for 1-, 2-, 3-, and 10-fold convolution
bundle <- clt(bundle, plot = (i %in% c(2,3,10)), ...)

}
}
clt.vee(verbose=F)

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

x−bar

P
ro

ba
bi

lit
y/

D
en

si
ty n = 1

●

●

●

●
●
●
●●

●●●●●
●
●
●
●
●●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●
●
●
●●

●●●●●
●
●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
01

0.
02

0.
03

0.
04

x−bar

P
ro

ba
bi

lit
y/

D
en

si
ty n = 2

●●
●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●

●
●
●
●

●

●

●

●

●

●
●
●●●●

●
●
●
●

●
●
●
●
●●●

●
●
●
●

●
●
●
●
●●
●●
●
●

●

●

●

●

●

●
●
●
●●●●●●

●●
●●●●●●●

●
●
●
●
●
●
●
●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

01
0

0.
02

0

x−bar

P
ro

ba
bi

lit
y/

D
en

si
ty n = 3

●●
●●●●●●●●●●

●●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
4

0.
00

8

x−bar

P
ro

ba
bi

lit
y/

D
en

si
ty n = 10

Exercises: The above should work for any disctrete distribution defined on a finite number of points. Try it on
some other ones. Try to find ones that make the convergence to the normal as slow as possible, say.

6

