
A Demo or Two

March 6, 2017

Here are a few simple demonstrations illustrating important concepts from the course. Most use R; see R Quick
Start for a quick introduction to R. You should be able to run these demos below by copying the R code shown below
and pasting it into an R console window (or putting it in a file and entering “source(’filename’)”).

Laws Of Large Numbers: The Weak and Strong Laws of Large Numbers are important theoretical results, essen-
tially guaranteeing that the average of a large number if independent samples from arbitrary distributions will
converge to the expected value of such a variable. As a simple illustration of this, the following looks at averages
of i.i.d. Uniform(0,1) random variables:

#
# "Regression Towards the Mean" -- by the law of large numbers, the mean of an
# increasingly large sample of, e.g., uniform RVs, should converge to the mean.
#
# Plot a sample of i.i.d. uniform RVs & successive sample means thereof.
#
# Parameters:
# n: # samples,
# ksigma: if > 0, also plot +/- ksigma*sigma envelope around the mean
# cex: controls point size,
# others: plot colors
#
# Usage:
# Copy/paste this into the console window of an R session, or enter
# "source('filename.R')" to define the function, then enter "rtm()" to run it.
#
rtm <- function(n=200, ksigma=2, cex=2, cmu='red', cavg='blue', csig='red'){
v <- runif(n) # n samples from uniform
mu <- 0.5 # mean &
sigma <- 1/sqrt(12) # variance of each sample
# plot the samples:
plot(v,pch='.',xlab='Trial number i',ylab='Sample i; Mean(1..i)',cex=cex)
# plot a horizontal line at mean:
lines(c(1,n),c(mu,mu),col=cmu,lwd=1)
# plot n successive sample means:
points(1:n,cumsum(v)/(1:n),type='l',col=cavg,lwd=2)
if(ksigma>0){
# plot k-sigma envelope around mean:
points(1:n, mu+ksigma*sigma/sqrt(1:n), type='l',lwd=1,col=csig,lty='dashed')
points(1:n, mu-ksigma*sigma/sqrt(1:n), type='l',lwd=1,col=csig,lty='dashed')
# add plot legend:
legend('bottomright',

legend=c("Sample Mean_n", "mu", paste("mu +/-",ksigma,"sigma")),
col=c( cavg, cmu, csig),
lwd=c( 2, 1, 1),
lty=c( 'solid', 'solid', 'dashed'),

bty='n')
}
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}

rtm() # Call it once, with default parameters.
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Another plot, with larger n:

rtm(n=1000)
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Exercise: Do something similar for a different distribution (normal, exponential, Poisson,...) in place of uniform.

The Central Limit Theorem: Another very important result is the Central Limit Theorem: Not only does the value
of the average of a large sample of independent random variables from arbitrary distributions converge to its
expected limit (above), but the shape of the distribution of those averages also converges to a well-defined
limit—namely, it is approximately normally distributed.

# Convergence of any wacky distrib to normal as in CLT
#
# Method: n-fold convolution of initial distribution with itself
#
# For the n-th convolution, we need both the (n-1)-st and the original
# distributions, so for convenience these are bundled into a list and
# returned, making a by-hand iteration simple:
# bundle1 <- clt(wacky=//*put your wacky distribution here*//)
# bundle2 <- clt(bundle1) # 2-fold convolution
# bundle3 <- clt(bundle2) # 3-fold convolution
# ...
#
# Parameters:
# bundle : initially NULL; subsequently, result of previous call
# plot = T to see plot
# verbose = T to annotate plot with mu, sigma, etc.
# bell = T to overlay bell curve
# wacky = vector of numbers representing relative probabilities of
# outcomes 1:length(wacky); irrelevant unless bundle == NULL
# cex = scale factor for point size
#
clt <- function(bundle=NULL, plot=T, verbose=T, bell=T,

wacky=c(1:10,9:0,rep(0,5),rep(5,10)), cex=NULL){
if(is.null(bundle)){

mywack <- wacky/sum(wacky) # normalize
bundle <- list(n=1,result=mywack,start=mywack) # bundle params/result
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}
if(plot){

len <- length(bundle$result)
x <- (0:(len-1))/(len-1)
y <- bundle$result
plot(x,y,xlab='x-bar',ylab='Probability/Density',cex=cex,pch=19)
mu <- sum(x*y)
sig2 <- sum((x-mu)ˆ2*y)
sig <- sqrt(sig2)
chatter <- ifelse(!verbose,'', paste(

'\nmu =', round(mu,2),
'\nsig =',round(sig,2),
'\nsig*sqrtn =', round(sig*sqrt(bundle$n),2),
'\nlen = ', length(x)));

text(.85,.8*max(bundle$result), paste('n =',bundle$n,chatter))
if(bell){points(x,dnorm(x,mu,sig)/length(x),type='l',lwd=2,col='blue')}

}
return(
list(
n = bundle$n+1,
result = convolve(bundle$result,rev(bundle$start),type='o'),
start = bundle$start))

}

# Make a "movie" of above; if "file" is NULL, display to screen, else write a
# multi-page .pdf file. The "..." formal and actual parameters have a special
# meaning in R: accept extra named arguments to this function and pass them to
# inner calls.
clt.movie <- function(filename ="central.limit.thm.movie.pdf", frames=50, ...){
opar<-par(no.readonly=T);on.exit(par(opar))
if(!is.null(filename)){

# noninteractive version: open .pdf graphics "device"
pdf(filename,onefile=T,width=9,height=7)

} else {
# interactive version: pause after each plot & ask to continue
devAskNewPage(TRUE)

}
bundle <- clt(...)
for(i in 2:frames){

# tweak cex to make dots smaller when there are more of them
bundle <- clt(bundle, cex=(1-i/frames)*.6+.4, ...)

}
if(!is.null(filename)){dev.off()} # close .pdf

}

clt.movie(NULL,4)
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# Another CLT example, just showing 4 of 10 frames
# Default is a vee-shaped distribution
clt.vee <- function(dist=abs(-16:16), ...){
opar <- par(mfrow=c(2,2),no.readonly=T) # graph params: 4 plots in 2x2 grid
on.exit(par(opar))
bundle <- clt(wacky=dist, plot=TRUE, ...)
for(i in 2:10) {
# show plots only for 1-, 2-, 3-, and 10-fold convolution
bundle <- clt(bundle, plot = (i %in% c(2,3,10)), ...)

}
}
clt.vee(verbose=F)
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Exercises: The above should work for any disctrete distribution defined on a finite number of points. Try it on
some other ones. Try to find ones that make the convergence to the normal as slow as possible, say.
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