Quiz Section \#7: Supplementary Exercises

CSE 312: Foundations of Computing II
Recall the probability density function for $X \sim \operatorname{Exp}(\lambda)$:

$$
f(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x} & , \text { if } x \geq 0 \\
0 & , \text { if } x<0
\end{array} .\right.
$$

1. Starting from the probability density function, prove that $\mathrm{E}[X]=1 / \lambda$. (Hint: use integration by parts.)
2. Starting from the probability density function, prove that $\mathrm{P}(X \geq t)=e^{-\lambda t}$, for $t \geq 0$. As a corollary, show that the cumulative distribution function for X is $F(t)=1-e^{-\lambda t}$.
3. Prove the memorylessness property for the exponential distribution $\operatorname{Exp}(\lambda)$: If s and t are nonnegative, then $\mathrm{P}(X>s+t \mid X>s)=\mathrm{P}(X>t)$.
4. Prove the memorylessness property for the geometric distribution geo (p).
5. Alex came up with a function that he thinks could represent a probability density function. He defined the potential pdf for X as $f(x)=\frac{1}{1+x^{2}}$ defined on $[0, \infty)$. Is this a valid pdf? If not, find a constant c such that the pdf $f(x)=\frac{c}{1+x^{2}}$ is valid. Then find $\mathrm{E}[X]$. (Hints: $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}, \tan \frac{\pi}{2}=\infty$, and $\tan 0=0$.)
6. Let $X \sim \operatorname{Exp}(\lambda)$. For $t<\lambda$, find $M_{X}(t)=\mathrm{E}\left[e^{t X}\right] . M$ is called the moment generating function of X. Find $M_{X}^{\prime}(0)$ and $M_{X}^{\prime \prime}(0)$. Do you notice any relationship between these two values and $\mathrm{E}[X]$ and $\mathrm{E}\left[X^{2}\right]$ (which are sometimes called the first and second moments of X)?
7. You throw a dart at an $s \times s$ square dartboard. The goal of this game is to get the dart to land as close to the lower left corner of the dartboard as possible. However, your aim is such that the dart is equally likely to land at any point on the dartboard. Let random variable X be the length of the side of the smallest square B in the lower left corner of the dartboard that contains the point where the dart lands. That is, the lower left corner of B must be the same point as the lower left corner of the dartboard, and the dart lands somewhere along the upper or right edge of B. For X, find the CDF, PDF, $\mathrm{E}[X]$, and $\operatorname{Var}(X)$.
