Random Variable (rv): A numeric function \(X: \Omega \to \mathbb{R} \) of the outcome.

Range/Support: The support/range of a random variable \(X \), denoted \(\Omega_X \), is the set of all possible values that \(X \) can take on.

Discrete Random Variable (drv): A random variable taking on a _______________ (either finite or countably infinite) number of possible values.

Probability Mass Function (pmf) for a discrete random variable \(X \): a function \(p_X: \Omega_X \to [0,1] \) with \(p_X(x) = P(X = x) \) that maps possible values of a discrete random variable to the probability of that value happening, such that \(\sum x p_X(x) = 1 \).

Expectation (expected value, mean, or average): The expectation of a discrete random variable is defined to be

\[
E[X] = \sum \quad
\]

The expectation of a function of a discrete random variable \(g(X) \) is

\[
E[g(X)] = \sum \quad
\]

Linearity of Expectation: Let \(X \) and \(Y \) be random variables, and \(a, b, c \in \mathbb{R} \). Then,

\[
E[aX + bY + c] = \quad
\]

Exercises

1. Suppose we have \(N \) items in a bag, \(K \) of which are successes. Suppose we draw (without replacement) until we have \(k \) successes, \(k \leq K \leq N \). Let \(X \) be the number of draws until the \(k^{th} \) success. What is \(\Omega_X \)? What is \(p_X(n) = P(X = n) \)? (We say \(X \) is a “negative hypergeometric” random variable).
2. A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a unit step right with probability p_1, to the left with probability p_2, and doesn’t move with probability p_3, where $p_1 + p_2 + p_3 = 1$. After 2 seconds, let X be the location of the frog. Find the probability mass function for X, $p_X(k)$. Find $E[X]$. Find the probability mass function for $Y = |X|$, $p_Y(k)$, and $E[Y]$.

3. Suppose we have r independent random variables X_1, \ldots, X_r that each represent the number of coins flipped up to and including the first head, where $P(\text{head}) = p$. Recall that each X_i has probability mass function,

$$p_{X_i}(k) = P(X_i = k) = (1 - p)^{k-1}p$$

a) What do you think $E[X_i]$ should be (without calculations) if $p = \frac{1}{2}$? If $p = \frac{1}{3}$? In the general case? (Proof in lecture next time.)

b) Suppose we define $X = X_1 + \cdots + X_r$. What does X represent, in English words? (Hint: think of performing each “trial” one after the other.)

c) What is Ω_X? Find the probability mass function for X, $p_X(k)$.

d) Find $E[X]$ using linearity of expectation.