Equivalently, if \(\text{Var}(Y) = \sigma^2 \), then
\[
P(|Y - \mu| \geq t \sigma) \leq \frac{1}{t^2}, \text{ for any } t > 0.
\]

Proof: Let \(X = (Y - \mu)^2 \).
\[
P(|Y - \mu| \geq \alpha) = P(X \geq \alpha^2)
\]
\[
\leq \frac{E[X]}{\alpha^2} \quad \text{(Markov, since } X \geq 0)\]
\[
= \frac{\text{Var}(Y)}{\alpha^2}
\]

Ex: Average daily expense is \(\mu = 1500 \). Suppose \(\sigma = 200 \). Let \(Y \) be daily expense.
\[
P(Y \geq 2500) = P(Y - 1500 \geq 1000)
\]
\[
\leq P(|Y - 1500| \geq 1000) \quad \text{(either } Y \geq 2500 \text{ or } Y \leq 500)\]
\[
\leq \frac{\text{Var}(Y)}{1000^2} = \frac{200^2}{1000^2} = \left(\frac{1}{5} \right)^2 = \frac{1}{25}
\]

Cantelli's Inequality (one-sided Chebyshev):
If \(\alpha > 0 \), then
\[
P(Y - \mu \geq \alpha) \leq \frac{\text{Var}(Y)}{\alpha^2}
\]

Chernoff bounds:
\[\text{Theorem: Suppose } X \sim \text{Bin}(n, p), \text{ for any } 0 < \delta < 1,\]
\[
P(X \geq (1 + \delta) \mu) \leq e^{-\frac{\delta^2 \mu}{3}}
\]
\[
P(X \leq (1 - \delta) \mu) \leq e^{-\frac{\delta^2 \mu}{2}}
\]
Law of Large Numbers

Consider i.i.d. random variables X_1, X_2, X_3, \ldots where $E[X_i] = \mu < \infty$ and $Var(X_i) = \sigma^2 < \infty$. Define sample mean $M_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.

- $E[M_n] = \mu$ and
- $Var(M_n) = \frac{\sigma^2}{n}$ (from linearity).

As n increases, M_n is more likely to be close to μ.

Theorem (Weak Law of Large Numbers):

For any $\varepsilon > 0$, as $n \to \infty$

\[P \left(|M_n - \mu| > \varepsilon \right) \to 0. \]

Proof: By Chebyshev's inequality,

\[P \left(|M_n - \mu| > \varepsilon \right) \leq \frac{Var(M_n)}{\varepsilon^2} = \frac{\sigma^2}{n \varepsilon^2} \to 0 \]

as $n \to \infty$.

Strong Law of Large Numbers:

\[P \left(\lim_{n \to \infty} M_n = \mu \right) = 1. \]

Strong \rightarrow Weak, but Weak $\not\rightarrow$ Strong.

In some sense, these laws are a consequence of the Central Limit Theorem, which says (distribution of $M_n \to N(\mu, \sigma^2/n)$ as $n \to \infty$).