Equally Likely Outcomes

\[P(E) = \sum_{a \in E} P(a) \quad \text{(axiom 2)} \]

\[= \sum_{a \in E} \frac{1}{12} = \frac{1E}{12} \]

Ex: Assume 2T face-up. Assume any 5-card hand is equally likely.

\[P(\text{no trump in initial hand}) = \frac{\binom{13}{5}}{\binom{52}{5}} \]

\[= \frac{15 \cdot 14 \cdot 13 \cdot 12 \cdot 11}{19 \cdot 18 \cdot 17 \cdot 16 \cdot 15} = \frac{3,003}{11,238} \approx 0.268 \]

Ex: Assume your 5-card hand is dealt before the trump is turned up.

\[P(\geq 1 \text{ marriage in your hand}) = \frac{\binom{4}{1} \binom{13}{1} - \binom{4}{2} \binom{12}{1}}{\binom{52}{5}} \]

\[\approx 0.204 \]

Ex: Assume 365 birthdays are equally probable. What is the prob. that, of n people, none share the same birthday?

Let \(E \) = assignment of a birthday to each of n people.

\[E = \{ \text{unique today} \ldots \} \]

\[P_n = P(\text{no shared birthday among n people}) \]

\[= \frac{1E}{12} = \frac{P(365,n)}{365^n} = \frac{365!}{(365-n)!} \]

\[= \frac{365 \cdot 364 \cdot 363 \ldots (365-n+1)}{365^n} \]
Some values:

\[N = 23 \Rightarrow p_{23} < 0.5 \]
\[N = 77 \Rightarrow p_{77} < 1/5000 \]
\[N = 100 \Rightarrow p_{100} < 1/3 \times 10^{-5} \]

Conditional Probability of \(E \) given \(F \), written \(P(E \mid F) \), where \(F \neq \emptyset \), is the probability that \(E \) occurs, given that \(F \) occurred. Sample space \(\Omega \), event \(E \supseteq F \).

With equally likely outcomes,

\[
P(E \mid F) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F)}{P(F)}
\]

This turns out to be the formula even if outcomes aren’t equally likely.

Ex: Roll a fair die. What is \(P(S | \text{odd}) \)?

\(E = \{2, 5, 6\}, F = \{1, 3, 5\} \)

1. From counting: \(P(E \mid F) = \frac{|E \cap F|}{|F|} = \frac{|E|}{|F|} = \frac{1}{3} \)

2. From probabilities: \(P(E \cap F) = \frac{P(E \mid F)}{P(F)} = \frac{P(E)}{P(F)} = \frac{1/6}{1/2} = \frac{1}{3} \)