MLE Steps

1. Find likelihood and log-likelihood.
2. Differentiate and set to 0 , solve.
3. Verify it is a maximum by showing the second derivative is negative (and checking endpoints).
4. (MLE) Suppose x_{1}, \ldots, x_{n} are iid samples from a distribution with density

$$
f_{X}(x ; \theta)=\left\{\begin{aligned}
\frac{\theta x^{\theta-1}}{2^{\theta}}, & 0 \leq x \leq 2 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Find the MLE for θ.
2. (Bias) Suppose X_{1}, \ldots, X_{n} are iid samples from a continuous uniform distribution, $\operatorname{Unif}(0, \theta)$. Consider the estimator $\hat{\theta}=\frac{3}{n} \sum_{i=1}^{n} X_{i}$. Is $\hat{\theta}$ unbiased? If not, find a scalar c such that $c \hat{\theta}$ is an unbiased estimator.
3. (Continuous Distributions). Let X have the following density:

$$
f_{X}(x)=\left\{\begin{array}{lc}
2 x, & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

a) Find $E\left[\frac{1}{X}\right]$.
b) What is $P(X=0.5)$?
4. (Counting) Suppose we have a standard 52-card deck and are dealt 5 cards. What is the probability we draw a full house? (3 of a kind, and 2 of a kind) (Ex. AAA22, J3J33, etc)

