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Setup

We will assume that our data x1, . . . , xn comes from a mixture of two Gaussians, where
τ1 = τ2 = 0.5, σ1 = σ2 = σ, with σ known, and unknown parameters µ1 and µ2.

• This means that we are assuming that each data point xi was generated by first tossing
a coin with Pr(Heads) = τ1 = 0.5, i.e. a fair coin. If it comes up heads, a point is
sampled from N(µ1, σ

2). Alternatively, if it comes up tails, a point is sampled from
N(µ2, σ

2). Let f1(x) (resp. f2(x)) be the density for the first (respectively second)
normal. As you know

fj(x) =
1√
2πσ

e−(x−µj)
2/(2σ2),

where j is either 1 or 2. We only get to see the sampled numbers xi.

• We are assuming that we know σ, but not µ1 or µ2.

• Given the values x1, . . . , xn and σ, our goal is to find a maximum likelihood estimate
θ̂1 of µ1 and a maximum likelihood estimate θ̂2 of µ2.

We’ll see how to use the EM algorithm to do this:

Definition 0.1. Denote by θt = (θt1, θ
t
2) our maximum likelihood estimates for (µ1, µ2) after

the tth iteration of EM.

Definition 0.2. For j = 1, 2, define

zij :=

{
1 xi was sampled from normal distribution j, i.e. N(µj, σ

2)

0 otherwise.
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EM Algorithm

• Choose some initial value θ0.

• Repeat until convergence for t = 0, 1, . . .

E for Expectation: Assuming that θt are the correct values of the parameters, for
each point xi, determine E(zij|xi) = Pr(zij = 1|xi).

M for Maximization: Given knowledge of E(zij|xi) for each j, and σ, find θ that
maximizes

E(LogLikelihood(x1, . . . , xn, z11, . . . zn1|θ)).

Set θt+1 to be this maximizing choice of the parameters θ.

Details of each step

Setup

There are many options for how to choose θ0. For example:

• Pick two random xi’s as the initial means.

• Pick two random numbers between the minimum of the xi’s and the maximum of the
xi’s.

• Sort the xi’s from largest to smallest, and take one mean to be dn/3erd largest and the
other to be d2n/3erd largest.

Expectation step

As derived in class via Bayes rule, (for τ1 = τ2 = 0.5)

E(zi1|xi) = Pr(zi1 = 1|xi) =
f1(xi|θt)

f1(xi|θt) + f2(xi|θt)
.

(E(zi1|xi) = Pr(zi1 = 1|xi) since zi1 is a Bernoulli random variable.) Substituting in, we get

Pr(zi1 = 1|xi) =

1√
2πσ

e−(xi−θ
t
1)

2/(2σ2)

1√
2πσ

e−(xi−θ
t
1)

2/(2σ2) + 1√
2πσ

e−(xi−θ
t
2)

2/(2σ2)
=

e−(xi−θ
t
1)

2/(2σ2)

e−(xi−θ
t
1)

2/(2σ2) + e−(xi−θ
t
2)

2/(2σ2)

Observe that of course Pr(zi1 = 1) + Pr(zi2 = 1) = 1, since zi1 = 1 means that the point xi
was drawn from first Gaussian, and zi2 = 1 means xi was drawn from the second Gaussian
(so zi1 = 1 if and only if zi2 = 0). Note that zi1 and zi2 are definitely not independent; each
one of them determines the other’s value.
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Maximization step

First, we assume that zi1 and zi2 are known (i.e. 0/1 valued) and figure out the loglikelihood
function.

To this end, observe that, assuming τ1 = τ2 = 0.5

Likelihood(xi, zij|θ) = L(xi, zij|θ) =

{
0.5f1(xi|θ) zi1 = 1

0.5f2(xi|θ) zi2 = 1.
(0.1)

and, since x1, . . . , xn are independent

Likelihood(x1, . . . , xn, z11, . . . zn1|θ) =
n∏
i=1

L(xi, zij|θ).

However, the above form of likelihood function (0.1) is inconvenient to work with. We rewrite
it as follows:

L(xi, zij|θ) = [0.5f1(xi|θ)]zi1 · [0.5f2(xi|θ)]zi2 .
Since exactly one of zi1 and zi2 is 1 (and the other is 0), this gives us exactly the same formula
as we got in (0.1).

Now we are good to go:

Likelihood(x1, . . . , xn, z11, . . . zn1|θ) =
n∏
i=1

L(xi, zij|θ) =
n∏
i=1

(
[0.5f1(xi|θ)]zi1 · [0.5f2(xi|θ)]zi2

)
.

An immediate observation is that, since zi1 + zi2 = 1 always, this simplifies to

n∏
i=1

0.5zi1+zi2
(

[f1(xi|θ)]zi1 · [f2(xi|θ)]zi2
)

=
n∏
i=1

0.5
(

[f1(xi|θ)]zi1 · [f2(xi|θ)]zi2
)
.

Now we compute the loglikelihood function LL(x1, . . . , xn, z11, . . . zn1|θ), which is

LL(~x, ~zi1|θ) = n ln 0.5 +
n∑
i=1

zi1 ln f1(xi|θ) +
n∑
i=1

zi2 ln f2(xi|θ)

Since

ln(fj(xi|θ)) = ln

(
1√
2πσ

e−(xi−θj)
2/(2σ2)

)
= −1

2
ln(2πσ2)− (xi − θj)2

2σ2

the loglikelihood function is

LL(~x, ~zij|θ) = n ln 0.5−
n∑
i=1

(
zi1
2

ln(2πσ2) +
zi1(xi − θ1)2

2σ2

)
−

n∑
i=1

(
zi2
2

ln(2πσ2) +
zi2(xi − θ2)2

2σ2

)
= n ln 0.5− n

2
ln(2πσ2)−

n∑
i=1

(
zi1(xi − θ1)2

2σ2

)
−

n∑
i=1

(
zi2(xi − θ2)2

2σ2

)
.
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This last step follows again from the fact that zi1 + zi2 = 1 deterministically.

Finally, we are ready to actually do the M step, which is to find the maximum
of E(LL(~x, ~zi1|θ), where the expectation is with respect to the zij’s conditioned on
~x.

Thus our goal is to maximize

E(LL(~x, ~zi1|θ)) = E

[
n ln 0.5− n

2
ln(2πσ2)−

n∑
i=1

(
zi1(xi − θ1)2

2σ2

)
−

n∑
i=1

(
zi2(xi − θ2)2

2σ2

)]
.

which by linearity of expectation this is simply

E(LL(~x, ~zi1|θ)) = n ln 0.5−n
2

ln(2πσ2)−
n∑
i=1

(
E(zi1|xi)(xi − θ1)2

2σ2

)
−

n∑
i=1

(
E(zi2|xi)(xi − θ2)2

2σ2

)
.

Conveniently, we computed E(zi1|xi) and E(zi2|xi) in the expectation step.
So we merely solve the equations

∂E(LL(~x, ~zi1|θ))
∂θ1

= 0 and
∂E(LL(~x, ~zi1|θ))

∂θ2
= 0

and check that we have found maxima. Everything separates nicely when you take the
derivatives etc and it turns out that the solution is

θ̂1 =

∑n
i=1E(zi1|xi)xi∑n
i=1E(zi1|xi)

and θ̂2 =

∑n
i=1E(zi2|xi)xi∑n
i=1E(zi2|xi)

.

Convergence

A common way to decide if your algorithm has converged is to pick some threshold value,
and declare victory as soon as the differences in the log likelihoods between two iterations is
lower than that threshold.
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