a zoo of (discrete)
random variables

discrete uniform random variables

A discrete random variable X equally likely to take any
(integer) value between integers a and b, inclusive, is uniform.

Notation: X ~ Unif(a,b)
1
Probability: ( ) —
Mean,Variance: E[X] = a+t b,Var[X] _ (b—a)(b—a+2)
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A discrete random variable X equally likely to take any
(integer) value between integers a and b, inclusive, is uniform.
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Example: value shown on one
roll of a fair die is Unif(1,6): X
P(X=i) = 1/6 .
E[X] =772
Var[X] = 35/12 01234567

X=i)
0.10 0.16 0.22

Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
P(X=1)=p and P(X=0)=1I-p
X is called a Bernoulli random variable: X ~ Ber(p)
EIX]=E[X?]=p
Var(X) = E[X*] - (E[X])> = p — p* = p(l-p)




Bernoulli random variables

An experiment results in “Success” or “Failure”

X is an indicator random variable (1 = success, 0 = failure)

P(X=1)=p and P(X=0)=1-p

X is called a Bernoulli random variable: X ~ Ber(p)
Examples:

coin flip

random binary digit

whether a disk drive crashed

binomial random variables

Consider n independent random variables Y; ~ Ber(p)
X = 2;Yiis the number of successes in n trials
X is a Binomial random variable: X ~ Bin(n,p)

"Vpi@—p)t i=0,1,...,n

Examples

# of heads in n coin flips

# of I’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster

P(X=k)

binomial pmfs

PMF for X ~ Bin(10,0.5) PMF for X ~ Bin(10,0.25)
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binomial pmfs

PMF for X ~ Bin(30,0.5) PMF for X ~ Bin(30,0.1)
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mean, variance of the binomial (II)

If Y1,Ys,...,Y, ~ Ber(p) and independent,
then X = >"" | Y; ~ Bin(n,p).

E[X]=np
Sy

=1

E[X]=E

= ZE[Y;] =nEY1] =np

(\Var[X] = np(1 - p)

=1

n

= ZVar [Y;] = nVar[Y7] = np(1 — p)

=1

Var[X| = Var

geometric distribution

In a series X, Xy, ... of Bernoulli trials with success
probability p,letY be the index of the first success, i.e.,

Xi=X2=..= Xr1 =0& Xy =1
ThenY is a geometric random variable with parameter p.

Examples:
Number of coin flips until first head
Number of blind guesses on SAT until | get one right
Number of darts thrown until you hit a bullseye
Number of random probes into hash table until empty slot
Number of wild guesses at a password until you hit it

geometric distribution

In a series Xj, X, ... of Bernoulli trials with success probability
p,letY be the index of the first success, i.e.,

Xi=X2=..= X =0&Xy=1
ThenY is a geometric random variable with parameter p.

P(Y=k) = (I-p)*'p; Mean |/p; Variance (I-p)/p?

geometric distribution

Flip a (biased) coin repeatedly until |** head observed
How many flips? Let X be that number.
P(X=1) =P(H) =p Yo L
P(X=2) = P(TH) = (I-p)p = 1-e
P(X=3) = P(TTH) = (1-p)%p when |z] < 1

memorize me!

Check that it is a valid probability distribution:
) ¥i>1,P{X=1i})>0

1

2) P (U{X:i}) =Y (1=p)lp=p) (1-p) =Py =

i>1 i>1 i>0




geometric random variable Geo(p)

Let X be the number of flips up to & including 1t head
observed in repeated flips of a biased coin.

P(H) = p; PT)=1-p=gq
p(i) = pg~' < pPuF
BIX] = Xsqipli) =5 ipa" ™ =p2isig" " (%)

A calculus trick:

s i—1 d i d i d i__ d 1 — 1
T = g = Y T LY T Ty T T

i>1 i>1 >0 >0

So () becomes: e

. i p
EX]=p) i = —F—— =
; (1-q? p* p
E.g.: B
p=1/2; on average head every 2" flip

p=1/10; on average, head every 10" flip. .

models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability 0.1
X = # of corrupted bits, X ~ Bin(4, 0.1)
In real networks, large bit strings (length n = 10%)
Corruption probability is very small:p = 10-¢
X ~ Bin(10% 10¢) is unwieldy to compute
Extreme n and p values arise in many cases

# bit errors in file written to disk
# of typos in a book

# of elements in particular bucket of large hash table
# of server crashes per day in giant data center

# facebook login requests sent to a particular server

Poisson random variables

Suppose “events” happen, independently, at
an average rate of A per unit time. Let X be
the actual number of events happening in a
given time unit. Then X is a Poisson r.v. with
parameter A (denoted X ~ Poi(\)) and has
distribution (PMF):
P(X =i)=e 2

il

Examples:
# of alpha particles emitted by a lump of radium in | sec.
# of traffic accidents in Seattle in one year
# of babies born in a day at UW Med center
# of visitors to my web page today

See B&T Section 6.2 for more on theoretical basis for Poisson.
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poisson random variables

X is a Poisson r.v. with parameter A if it has PMF:

P(X =i)=e 2

7!

Is it a valid distribution? Recall Taylor series:

PP M\

7!
0<i

S P == e =t S =t =

0<e 0<e 0<q
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poisson random variables

X is a Poisson r.v. with parameter A if it has PMF:

P(X =i)=e 2

7!

Is it a valid distribution? Recall Taylor series:

A0\ A
A B
et T T A

S P == e = S =t =

0<e 0<s 0<1i

expected value of poisson r.v.s

E[X] = Z@ e_)‘)\z

0<i > i =0 term is zero
_ A’
= E 1-€e A
1<i
R

1<z Z_l >i:i'|
_ fAZ

0<]
e et
by As expected, given definition
in terms of “average rate \”

(Var[X] = A, too; proof similar, see B&T example 6.20)
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binomial —> Poisson in the limit

X ~ Binomial(n,p)

Poisson approximates binomial when n is large, p is small,
and A = np is “moderate”

20




binomial — poisson in the limit

X ~ Binomial(n,p)

() () s
n(n—1)-(n—i+1) ¥ (L-A/n)"

n' il (1—\/n)
_onn—1)---(n—i+1) X n
= (=) o (1=A/n)
R 1 N e

l.e., Binomial = Poisson for large n, small p, moderate i, A.

Handy: Poisson has only | parameter—the expected # of successes  ,,

binomial random variable is poisson in the limit

Poisson approximates binomial when n is large, p is small,
and A = np is “moderate”

Different interpretations of “moderate,”’ e.g.
n>20and p <0.05
n>100and p <0.l

Formally, Binomial is Poisson in the limit as
n — oo (equivalently,p — 0) while holding np = A
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sending data on a network

Consider sending bit string over a network
Send bit string of length n = 10*
Probability of (independent) bit corruption is p = 10¢
X ~ Poi(A = 10%10¢ = 0.01)
What is probability that message arrives uncorrupted?
P(X =0) = e 2] = 0010012 () 990049834
UsingY ~ Bin(10%, 10°¢):
P(Y=0) = 0.990049829

l.e., Poisson approximation (here) is accurate to ~5 parts per billion
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binomial vs poisson

B Binomial(10, 0.3)

0.20
|

P(X=k)
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expectation and variance of a poisson

Recall: if Y ~ Bin(n,p), then:
E[Y] = pn
Var[Y] = np(l-p)

And if X ~ Poi(\) where A = np (n 0, p — 0) then
EX] =\ =np = E[Y]

Var[X] = A = A(I-A/n) = np(1-p) =Var[Y]
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expectation and variance of a poisson

Recall: if Y ~ Bin(n,p), then:
E[Y] =pn
Var[Y] = np(l-p)
And if X ~ Poi(A\) where A = np (n =00, p — 0) then
E[X] =\ =np=E[Y]
Var[X] = A = A(I-A/n) = np(l-p) =Var[Y]
Expectation and variance of Poisson are the same (\)

Expectation is the same as corresponding binomial
Variance almost the same as corresponding binomial

Note: when two different distributions share the same
mean & variance, it suggests (but doesn’t prove) that
one may be a good approximation for the other.
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balls in urns — the hypergeometric distribution

Draw n balls (without replacement) from an urn containing
N, of which m are white, the rest black. n &2

Let X = number of white balls drawn <Vl

m\ (N—m N
px g = (DO N

()

E[X] = np, where p = m/N (the fraction of white balls)
“Let X be 0/1 indicator for j-th ball is white, X = X X;

The X are dependent, but E[X] = E[Z X{] = Z E[X]] = np
Var[X] = np(1-p)(I-(n-1)/(N-1))

like
binomial
(almost)
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some important (discrete) distributions

Name PMF E(X) E(X?) o2

Uniform(a,b)  f(k) = ﬁ, k=aa+1,..., b ot (b—aJ{Ql) —1

. [1-p ifk=0
Bernoulli(p) ~ f(k) = { b k=1 p P p(1—p)
Binomial(p,n) f(k) = ()p*(1—p)" %, k=0,1,....n np np(l —p)
Poisson(\) Fk) = e k=0,1,... A AA+D) A

Geometric(p)  f(k) =p(1 —p)F L k=1,2,...

Sl
)

Hypergeomet- £(k) (§9) ) nm nm ( —1)(m—1 1 )
ric(n, N, m) S ™ ’ N N\ N—1 N
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