

discrete uniform random variables

A discrete random variable X equally likely to take any (integer) value between integers *a* and *b*, inclusive, is *uniform*.

Notation:	$X \sim \text{Unif}(a,b)$
Probability:	$P(X=i) = \frac{1}{b-a+1}$
Mean, Variance:	$E[X] = \frac{a+b}{2}, \operatorname{Var}[X] = \frac{(b-a)(b-a+2)}{12}$

discrete uniform random variables

A discrete random variable X equally likely to take any (integer) value between integers *a* and *b*, inclusive, is *uniform*.

Notation: $X \sim \text{Unif}(a,b)$ Probability: $P(X = i) = \frac{1}{b-a+1}$ Mean, Variance: $E[X] = \frac{a+b}{2}$, $\operatorname{Var}[X] = \frac{(b-a)(b-a+2)}{12}$ Example: value shown on one roll of a fair die is Unif(1,6): P(X=i) = 1/6 E[X] = 7/2 $\operatorname{Var}[X] = 35/12$

Bernoulli random variablesAn experiment results in "Success" or "Failure"X is an indicator random variable (1 = success, 0 = failure)P(X=1) = p and P(X=0) = 1-pX is called a Bernoulli random variable: X ~ Ber(p) $E[X] = E[X^2] = p$ Var(X) = $E[X^2] - (E[X])^2 = p - p^2 = p(1-p)$

binomial random variables

6

Consider n independent random variables $Y_i \sim Ber(p)$ X = $\Sigma_i Y_i$ is the number of successes in n trials X is a *Binomial* random variable: X ~ Bin(n,p)

 $P(X = i) = \binom{n}{i} p^{i} (1 - p)^{n - i} \quad i = 0, 1, \dots, n$

Examples

5

of heads in n coin flips# of I's in a randomly generated length n bit string# of disk drive crashes in a 1000 computer cluster

$$\begin{split} & \text{mean, variance of the binomial (II)} \\ & \text{If } Y_1, Y_2, \dots, Y_n \sim \text{Ber}(p) \text{ and independent,} \\ & \text{then } X = \sum_{i=1}^n Y_i \sim \text{Bin}(n,p). \\ \hline & E[X] = np \\ & E[X] = E\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n E\left[Y_i\right] = nE[Y_1] = np \\ \hline & \sqrt{\text{Var}[X] = np(1-p)} \\ & \sqrt{\text{Var}[X] = \text{Var}\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n \text{Var}\left[Y_i\right] = n\text{Var}[Y_1] = np(1-p) \end{split}$$

geometric distribution

In a series $X_1, X_2, ...$ of Bernoulli trials with success probability p, let Y be the index of the first success, i.e., $X_1 = X_2 = ... = X_{Y-1} = 0 \& X_Y = 1$ Then Y is a *geometric* random variable with parameter p. Examples: Number of coin flips until first head Number of blind guesses on SAT until I get one right Number of darts thrown until you hit a bullseye Number of random probes into hash table until empty slot Number of wild guesses at a password until you hit it

10

geometric distribution

In a series $X_1, X_2, ...$ of Bernoulli trials with success probability p, let Y be the index of the first success, i.e.,

 $X_1 = X_2 = ... = X_{Y-1} = 0 \& X_Y = 1$

Then Y is a geometric random variable with parameter p.

 $P(Y=k) = (1-p)^{k-1}p;$ Mean 1/p; Variance (1-p)/p²

geometric random variable Geo(p)

Let X be the number of flips up to & including I^{st} head observed in repeated flips of a biased coin.

$$\begin{array}{rcl} P(H) &=& p; \ P(T) = 1 - p = q \\ p(i) &=& pq^{i-1} &\leftarrow \textit{PMF} \\ E[X] &=& \sum_{i \ge 1} ip(i) = \sum_{i \ge 1} ipq^{i-1} = p\sum_{i \ge 1} iq^{i-1} & (*) \\ \mbox{A calculus trick:} & & \sum_{i \ge 1} iy^{i-1} = \sum_{i \ge 1} \frac{d}{dy} y^i = \sum_{i \ge 0} \frac{d}{dy} y^i = \frac{d}{dy} \sum_{i \ge 0} y^i = \frac{d}{dy} \frac{1}{1 - y} = \frac{1}{(1 - y)^2} \\ \mbox{So (*) becomes:} & & E[X] = p\sum_{i \ge 1} iq^{i-1} = \frac{p}{(1 - q)^2} = \frac{p}{p^2} = \frac{1}{p} \\ \mbox{E.g.:} & & p = 1/2; \ \text{on average head every } 2^{nd} \ \text{flip} \\ p = 1/10; \ \text{on average, head every } 10^{\text{th}} \ \text{flip.} \end{array}$$

Sending a bit string over the network n = 4 bits sent, each corrupted with probability 0.1 X = # of corrupted bits, $X \sim Bin(4, 0.1)$ In real networks, large bit strings (length $n \approx 10^4$) Corruption probability is very small: $p \approx 10^{-6}$ $X \sim Bin(10^4, 10^{-6})$ is unwieldy to compute Extreme n and p values arise in many cases # bit errors in file written to disk # of typos in a book # of elements in particular bucket of large hash table # of server crashes per day in giant data center # facebook login requests sent to a particular server

14

Poisson random variables

Suppose "events" happen, independently, at an average rate of λ per unit time. Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) and has distribution (PMF):

$$P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

Examples:

of alpha particles emitted by a lump of radium in 1 sec.# of traffic accidents in Seattle in one year

of babies born in a day at UW Med center

of visitors to my web page today

See B&T Section 6.2 for more on theoretical basis for Poisson.

15

P(X=i)

0.0

0

1

3

5

6

poisson random variables

17

X is a Poisson r.v. with parameter λ if it has PMF:

$$P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

Is it a valid distribution? Recall Taylor series:

$$e^{\lambda} = \frac{\lambda^{0}}{0!} + \frac{\lambda^{1}}{1!} + \dots = \sum_{0 \le i} \frac{\lambda^{i}}{i!}$$

So
$$\sum_{0 \le i} P(X = i) = \sum_{0 \le i} e^{-\lambda} \frac{\lambda^{i}}{i!} = e^{-\lambda} \sum_{0 \le i} \frac{\lambda^{i}}{i!} = e^{-\lambda} e^{\lambda} = 1$$

poisson random variables

X is a Poisson r.v. with parameter λ if it has PMF:

$$P(X=i) = e^{-\lambda} \frac{\lambda}{i}$$

Is it a valid distribution? Recall Taylor series:

 $X \sim \text{Binomial}(n,p)$

$$\sum_{i \leq i} P(X=i) = \sum_{0 \leq i} e^{-\lambda} \frac{\lambda^i}{i!} = e^{-\lambda} \sum_{0 \leq i} \frac{\lambda^i}{i!} = e^{-\lambda} e^{\lambda} = 1$$

18

binomial —> Poisson in the limit

Poisson approximates binomial when n is large, p is small, and λ = np is "moderate"

		binomial \rightarrow poisson in the limit
X ~ Binom	nial(r	ı,p)
P(X=i)	=	$\binom{n}{i}p^i(1-p)^{n-i}$
	=	$\frac{n!}{i!(n-i)!} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}, \text{ where } \lambda = pn$
	=	$\frac{n(n-1)\cdots(n-i+1)}{n^i} \frac{\lambda^i}{i!} \frac{(1-\lambda/n)^n}{(1-\lambda/n)^i}$
	=	$\underbrace{\frac{n(n-1)\cdots(n-i+1)}{(n-\lambda)^i}}_{(n-\lambda)^i} \frac{\lambda^i}{i!} \underbrace{(1-\lambda/n)^n}_{(1-\lambda/n)}$
	\approx	$1 \qquad \qquad \cdot \; rac{\lambda^i}{i!} \; \cdot e^{-\lambda}$
I.e., Binom	ial ≈	Poisson for large n, small p, moderate i, λ .
Handy: Poiss	on ha	is only I parameter-the expected # of successes 21

binomial random variable is poisson in the limit

Poisson approximates binomial when n is large, p is small, and λ = np is "moderate"

Different interpretations of "moderate," e.g. n > 20 and p < 0.05n > 100 and p < 0.1

Formally, Binomial is Poisson in the limit as $n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $np = \lambda$

expectation and variance of a poisson

Recall: if $Y \sim Bin(n,p)$, then: E[Y] = pn Var[Y] = np(1-p)And if $X \sim Poi(\lambda)$ where $\lambda = np (n \rightarrow \infty, p \rightarrow 0)$ then $E[X] = \lambda = np = E[Y]$ $Var[X] = \lambda \approx \lambda(1-\lambda/n) = np(1-p) = Var[Y]$

25

expectation and variance of a poisson

Recall: if
$$Y \sim Bin(n,p)$$
, then:
 $E[Y] = pn$
 $Var[Y] = np(1-p)$
And if $X \sim Poi(\lambda)$ where $\lambda = np$ ($n \rightarrow \infty, p \rightarrow 0$) then
 $E[X] = \lambda = np = E[Y]$
 $Var[X] = \lambda \approx \lambda(1-\lambda/n) = np(1-p) = Var[Y]$
Expectation and variance of Poisson are the same (λ)
Expectation is the same as corresponding binomial
Variance almost the same as corresponding binomial
Note: when two different distributions share the same
mean & variance, it suggests (but doesn't prove) that
one may be a good approximation for the other.

26

Name	PMF	E(X)	E(X ²)	σ^2
Uniform(a, b)	$f(k) = \frac{1}{(b-a+1)}, k = a, a+1, \dots, b$	$\frac{a+b}{2}$		$\frac{(b-a+1)^2-1}{12}$
Bernoulli(p)	$f(k) = \left\{ \begin{array}{ll} 1-p & \text{if } k=0 \\ p & \text{if } k=1 \end{array} \right.$	p	p	p(1-p)
Binomial(p, n)	$f(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, \dots, n$	np		np(1-p)
$Poisson(\lambda)$	$f(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \dots$	λ	$\lambda(\lambda+1)$	λ
Geometric(p)	$f(k) = p(1-p)^{k-1}, k = 1, 2, \dots$	$\frac{1}{p}$	$\frac{2-p}{p^2}$	$\frac{1-p}{p^2}$
Hypergeomet- ric (n, N, m)	$f(k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, N$	$\frac{nm}{N}$		$\frac{nm}{N}\left(\frac{(n-1)(m-1)}{N-1}+1-\frac{n}{2}\right)$

balls in urns - the hypergeometric distribution

Draw *n* balls (without replacement) from an urn containing N, of which *m* are white, the rest black. *n*

Let X = number of white balls drawn

(almost)

$$P(X = i) = \frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{n}}$$

E[X] = np, where p = m/N (the fraction of white balls) $proof: Let X_{i} be 0/1 \text{ indicator for j-th ball is white, } X = \Sigma X_{i}$ $The X_{i} \text{ are dependent, but } E[X] = E[\Sigma X_{i}] = \Sigma E[X_{i}] = np$ Var[X] = np(1-p)(1-(n-1)/(N-1))