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a zoo of  (discrete) 
random variables

discrete uniform random variables

A discrete random variable X equally likely to take any 
(integer) value between integers a and b, inclusive, is uniform.

Notation:           X ~ Unif(a,b)

Probability:

Mean, Variance:
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discrete uniform random variables

A discrete random variable X equally likely to take any 
(integer) value between integers a and b, inclusive, is uniform.

Notation:           X ~ Unif(a,b)

Probability:

Mean, Variance:

Example: value shown on one  
roll of a fair die is Unif(1,6):

P(X=i) = 1/6  
E[X]    = 7/2  
Var[X] = 35/12
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Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)
E[X] = E[X2] = p
Var(X) = E[X2] – (E[X])2 = p – p2 = p(1-p)
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Bernoulli random variables
An experiment results in “Success” or “Failure”

X is an indicator random variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)

Examples:
coin flip
random binary digit
whether a disk drive crashed
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binomial random variables
Consider n independent random variables Yi ~ Ber(p) 

X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

Examples
# of heads in n coin flips
# of 1’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster
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binomial pmfs
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binomial pmfs
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mean, variance of  the binomial (II)
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In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1

Then Y is a geometric random variable with parameter p.

geometric distribution
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Examples:
Number of coin flips until first head
Number of blind guesses on SAT until I get one right
Number of darts thrown until you hit a bullseye
Number of random probes into hash table until empty slot
Number of wild guesses at a password until you hit it

In a series X1, X2, ... of Bernoulli trials with success probability 
p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

P(Y=k) = (1-p)k-1p;   Mean 1/p;    Variance (1-p)/p2

geometric distribution
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geometric distribution
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Flip a (biased) coin repeatedly until 1st head observed

How many flips?  Let X be that number.
P(X=1) = P(H)     = p
P(X=2) = P(TH)   = (1-p)p
P(X=3) = P(TTH) = (1-p)2p
...

Check that it is a valid probability distribution:

1)

2)

memorize me!



Let X be the number of flips up to & including 1st head 
observed in repeated flips of a biased coin.  

A calculus trick:

So (*) becomes:

E.g.:
p=1/2;   on average head every   2nd flip
p=1/10; on average, head every 10th flip.

P (H) = p; P (T ) = 1� p = q

p(i) = pqi�1

E[X] =
P

i�1 ip(i) =
P

i�1 ipq
i�1 = p

P
i�1 iq

i�1 (⇤)

13

geometric random variable Geo(p)

dy0/dy = 0

E[X] = p
X

i�1

iqi�1 =
p

(1� q)2
=

p

p2
=

1

p

← PMF

models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability 0.1
X = # of corrupted bits, X ~ Bin(4, 0.1)
In real networks, large bit strings (length n ≈ 104)
Corruption probability is very small: p ≈ 10-6

X ~ Bin(104, 10-6) is unwieldy to compute
Extreme n and p values arise in many cases

# bit errors in file written to disk  
# of typos in a book
# of elements in particular bucket of large hash table  
# of server crashes per day in giant data center
# facebook login requests sent to a particular server
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Siméon Poisson, 1781-1840

Poisson random variables

Suppose “events” happen, independently, at 
an average rate of λ per unit time.  Let X be  
the actual number of events happening in a 
given time unit.  Then X is a Poisson r.v. with 
parameter λ (denoted X ~ Poi(λ)) and has 
distribution (PMF):

Examples:
# of alpha particles emitted by a lump of radium in 1 sec.
# of traffic accidents in Seattle in one year
# of babies born in a day at UW Med center
# of visitors to my web page today

See B&T Section 6.2 for more on theoretical basis for Poisson.
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poisson  random variables
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X is a Poisson r.v. with parameter λ if it has PMF:

Is it a valid distribution?  Recall Taylor series:

So

poisson random variables

17

X is a Poisson r.v. with parameter λ if it has PMF:

Is it a valid distribution?  Recall Taylor series:

So

poisson random variables
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expected value of  poisson r.v.s
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j = i-1

(Var[X] = λ, too; proof similar, see B&T example 6.20) 

As expected, given definition 
in terms of “average rate λ”

i = 0 term is zero

binomial —> Poisson in the limit
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X ~ Binomial(n,p)         

Poisson approximates binomial when n is large, p is small, 
and λ = np is “moderate”



X ~ Binomial(n,p)

I.e., Binomial ≈ Poisson for large n, small p, moderate i, λ.
Handy: Poisson has only 1 parameter–the expected # of successes

binomial → poisson in the limit
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binomial random variable is poisson in the limit

Poisson approximates binomial when n is large, p is small, 
and λ = np is “moderate”

Different interpretations of “moderate,” e.g.
n > 20 and p < 0.05
n > 100 and p < 0.1

Formally, Binomial is Poisson in the limit as  
n → ∞ (equivalently, p → 0) while holding np =  λ
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sending data on a network

Consider sending bit string over a network
Send bit string of length n = 104

Probability of (independent) bit corruption is p = 10-6

X ~ Poi(λ = 104•10-6 = 0.01)
What is probability that message arrives uncorrupted?

Using Y ~ Bin(104, 10-6): 

P(Y=0) ≈ 0.990049829

I.e., Poisson approximation (here) is accurate to ~5 parts per billion
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binomial vs poisson
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expectation and variance of  a poisson

Recall:  if  Y ~ Bin(n,p), then:
E[Y] = pn
Var[Y] = np(1-p)

And if X ~ Poi(λ) where λ = np (n →∞, p → 0) then 

  E[X]   = λ  = np = E[Y]

  Var[X] = λ ≈ λ(1-λ/n) = np(1-p) = Var[Y]
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expectation and variance of  a poisson

Recall:  if  Y ~ Bin(n,p), then:
E[Y] = pn
Var[Y] = np(1-p)

And if X ~ Poi(λ) where λ = np (n →∞, p → 0) then 

  E[X]   = λ  = np = E[Y]

  Var[X] = λ ≈ λ(1-λ/n) = np(1-p) = Var[Y]

Expectation and variance of Poisson are the same (λ)
Expectation is the same as corresponding binomial
Variance almost the same as corresponding binomial

Note: when two different distributions share the same  
mean & variance, it suggests (but doesn’t prove) that  
one may be a good approximation for the other.
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balls in urns – the hypergeometric distribution

Draw n balls (without replacement) from an urn containing 
N, of which m are white, the rest black.  
Let X = number of white balls drawn

E[X] = np,   where p = m/N (the fraction of white balls)
proof: Let Xj be 0/1 indicator for j-th ball is white, X = Σ Xj

The Xj are dependent, but E[X] =  E[Σ Xj] = Σ E[Xj] = np

Var[X] = np(1-p)(1-(n-1)/(N-1))
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N
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binomial
(almost)

P (X = i) =
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some important (discrete) distributions
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Name PMF E[k] E[k2] �2 Ross

Uniform(a, b) f(k) = 1
(b�a+1) , k = a, a+ 1, . . . , b a+b

2
(b�a+1)2�1

12 p194

Bernoulli(p) f(k) =

(
1� p if k = 0
p if k = 1

p p p(1� p) p134

Binomial(p, n) f(k) =
�n
k

�
pk(1� p)n�k, k = 0, 1, . . . , n np np(1� p) p134

Poisson(�) f(k) = e�� �k

k! , k = 0, 1, . . . � �(�+ 1) � p143

Geometric(p) f(k) = p(1� p)k�1, k = 1, 2, . . . 1
p

2�p
p2

1�p
p2 p155

Hypergeomet-
ric(n,N,m)

f(k) =
(mk )(

N�m
n�k )

(Nn)
, k = 0, 1, . . . , N nm

N
nm
N

⇣
(n�1)(m�1)

N�1 + 1� nm
N

⌘
p160

E(X)  E(X2)


