
1

2

Probability and Algorithms

3

Analyzing Algorithms

Goal: “Runs fast on typical real problem instances”

How do we evaluate this?

Example: Binary search
Given a sorted array of n elements, determine if the array contains the
number 157?

4

Measuring efficiency

Time ≈ # of instructions executed in a simple
programming language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step

each memory access takes one time step

5

T

n

Complexity �
analysis

Problem size n
Best-case complexity: min # steps algorithm
takes on any input of size n

Average-case complexity: avg # steps algorithm
takes on inputs of size n

Worst-case complexity: max # steps
algorithm takes on any input of size n

2

6

Complexity
The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes on
problems of size n, with each problem size n.

Mathematically,
T: N+ → R+

I.e., T is a function that maps positive integers (problem
sizes) to positive real numbers (number of steps).

7
Problem size

Ti
m

e

T(n)

Complexity

8

Simple Example
Array of n bits.
I promise you that either they are all 1’s or ½ 0’s
and ½ 1’s.

Give me a program that will tell me which it is.
Best case? Worst case?

Neat idea: use randomization to reduce the
worst case

9

Complexity
The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes on
problems of size n, with each problem size n.

For randomized algorithms, look at
worst-case value of E(T), where the
expectation is taken over randomness in
algorithm.

3

Quicksort

10

(Assume all elements are distinct.)

Given array of some length n
If n = 0 or 1, halt

Else pick element p of array as “pivot”
Split array into subarrays <p, > p
Recursively sort elements < p
Recursively sort elements > p

How do we bound the running time?

Analysis of Quicksort

11

Worst case number of comparisons:

How can we use randomization to improve running
time?

Pick uniformly random element as a pivot each
step

=> Randomized algorithm

✓
n

2

◆

Analysis of Randomized Quicksort

12

Quicksort with random pivots

X = # of comparisons. What is E(X)?

At what point is it determined whether or not ith smallest
and jth smallest elements get directly compared? (i < j)

Claim: fate determined first time an elt in [ei, ej] picked.

X =
X

1i<jn

Xij

Xij indicates whether or not i-th and j-th are compared

Analysis of Randomized Quicksort�
Fix pair i,j. Compute

13

Define indicator r.v. that is 1 if elt in [ei, ej] first
selected at level k in the recursive tree.

Ak

E(Xij) = Pr(Xij = 1)

=
X

1kn

Pr(Xij = 1|Ak)Pr(Ak)

=
2

j � i+ 1

X

1kn

Pr(Ak)

Pr(Xij = 1|Ak) =
2

j � i+ 1

=
2

j � i+ 1

E(Xij)

4

Analysis of Randomized Quicksort

14

E(X) =
X

1i<jn

E(Xij)

=
X

1i<n

X

j>i

2

j � i+ 1

 2
X

1i<n

✓
1

2
+

1

3
+ . . .+

1

n� i+ 1

◆

 2n ln(n) +O(n)

