Probability and Algorithms

2

Analyzing Algorithms

Goal: "Runs fast on typical real problem instances"

How do we evaluate this?

Example: Binary search

Given a sorted array of n elements, determine if the array contains the number 157?

3

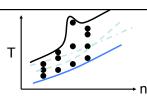
Measuring efficiency

Time ≈ # of instructions executed in a simple programming language

only simple operations (+,*,-,=,if,call,...) each operation takes one time step each memory access takes one time step

4

Complexity analysis



Problem size n

Best-case complexity: min # steps algorithm takes on any input of size n

Average-case complexity: avg # steps algorithm takes on inputs of size n

Worst-case complexity: max # steps algorithm takes on any input of size n

5

Complexity

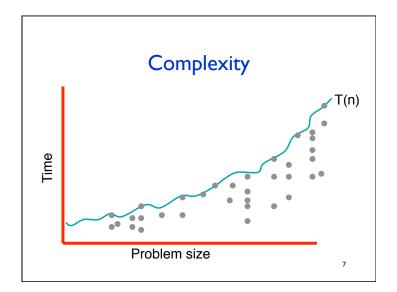
The *complexity* of an algorithm associates a number T(n), the worst-case time the algorithm takes on problems of size n, with each problem size n.

Mathematically,

T: $N+ \rightarrow R+$

I.e., T is a function that maps positive integers (problem sizes) to positive real numbers (number of steps).

6



Simple Example

Array of n bits.

I promise you that either they are all 1's or $\frac{1}{2}$ 0's and $\frac{1}{2}$ 1's.

Give me a program that will tell me which it is. Best case? Worst case?

Neat idea: use randomization to reduce the worst case

Complexity

The *complexity* of an algorithm associates a number T(n), the worst-case time the algorithm takes on problems of size n, with each problem size n.

For **randomized algorithms**, look at worst-case value of E(T), where the expectation is taken over randomness in algorithm.

9

Quicksort

(Assume all elements are distinct.)

Given array of some length n If n = 0 or 1, halt

Else pick element p of array as "pivot"

Split array into subarrays <p, > p

Recursively sort elements p

How do we bound the running time?

10

Analysis of Quicksort

Worst case number of comparisons: $\binom{n}{2}$

How can we use randomization to improve running time?

Pick uniformly random element as a pivot each step

=> Randomized algorithm

П

Analysis of Randomized Quicksort

Quicksort with random pivots

X = # of comparisons. What is E(X)?

$$X = \sum_{1 \le i \le j \le n} X_{ij}$$

 X_{ij} indicates whether or not i-th and j-th are compared

At what point is it determined whether or not i^{th} smallest and j^{th} smallest elements get directly compared? (i < j)

Claim: fate determined first time an elt in [e, e,] picked.

12

Analysis of Randomized Quicksort Fix pair i,j. Compute $E(X_{ij})$

Define A_k indicator r.v. that is I if elt in [e, e,] **first** selected at level k in the recursive tree.

$$E(X_{ij}) = Pr(X_{ij} = 1)$$

$$= \sum_{1 \le k \le n} Pr(X_{ij} = 1 | A_k) Pr(A_k)$$

$$= \frac{2}{j - i + 1} \sum_{1 \le k \le n} Pr(A_k) = \frac{2}{j - i + 1}$$

$$Pr(X_{ij} = 1 | A_k) = \frac{2}{j - i + 1}$$
13

Analysis of Randomized Quicksort

$$E(X) = \sum_{1 \le i < j \le n} E(X_{ij})$$

$$= \sum_{1 \le i < n} \sum_{j > i} \frac{2}{j - i + 1}$$

$$\le 2 \sum_{1 \le i < n} \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n - i + 1}\right)$$

$$\le 2n \ln(n) + O(n)$$
14