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Probability and Algorithms
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Analyzing Algorithms

Goal: “Runs fast on typical real problem instances”

How do we evaluate this?

Example: Binary search
Given a sorted array of n elements, determine if the array contains the 
number 157?
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Measuring efficiency

Time ≈ # of instructions executed in a simple 
programming language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step

each memory access takes one time step
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Problem size n
Best-case complexity: min # steps algorithm 
takes on any input of size n

Average-case complexity: avg # steps algorithm 
takes on inputs of size n

Worst-case complexity: max # steps 
algorithm takes on any input of size n
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Complexity
The complexity of an algorithm associates a number 
T(n), the worst-case time the algorithm takes on 
problems of size n, with each problem size n.

Mathematically,
T: N+ → R+

I.e., T is a function that maps positive integers (problem 
sizes) to positive real numbers (number of steps).
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Simple Example
Array of n bits.
I promise you that either they are all 1’s or ½ 0’s 
and ½ 1’s.

Give me a program that will tell me which it is.
Best case?   Worst case?

Neat idea: use randomization to reduce the 
worst case
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Complexity
The complexity of an algorithm associates a number 
T(n), the worst-case time the algorithm takes on 
problems of size n, with each problem size n.

For randomized algorithms, look at 
worst-case value of E(T), where the 
expectation is taken over randomness in 
algorithm.
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Quicksort
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(Assume all elements are distinct.)

Given array of some length n
If n = 0 or 1, halt

Else pick element p of array as “pivot”
Split array into subarrays  <p,  > p
Recursively sort elements < p
Recursively sort elements > p

How do we bound the running time?

Analysis of Quicksort
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Worst case number of comparisons:

How can we use randomization to improve running 
time?

Pick uniformly random element as a pivot each 
step

=> Randomized algorithm

✓
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Analysis of Randomized Quicksort
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Quicksort with random pivots

X = # of comparisons.   What is E(X)?

At what point is it determined whether or not ith smallest 
and jth smallest elements get directly compared?  (i < j)

Claim:  fate determined first time an elt in [ei, ej] picked.

X =
X

1i<jn

Xij

Xij indicates whether or not i-th and j-th are compared

Analysis of Randomized Quicksort�
Fix pair i,j.      Compute 
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Define         indicator r.v. that is 1 if elt in [ei, ej] first 
selected at level k in the recursive tree.

Ak

E(Xij) = Pr(Xij = 1)

=
X

1kn

Pr(Xij = 1|Ak)Pr(Ak)

=
2

j � i+ 1

X

1kn

Pr(Ak)

Pr(Xij = 1|Ak) =
2

j � i+ 1

=
2

j � i+ 1

E(Xij)
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Analysis of Randomized Quicksort
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E(X) =
X

1i<jn

E(Xij)

=
X

1i<n

X

j>i

2

j � i+ 1

 2
X

1i<n
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 2n ln(n) +O(n)


